diff --git a/docs/academy/tutorials/provable-mlr-forecasting-aaves-lifetime-repayments.md b/docs/academy/tutorials/provable-mlr-forecasting-aaves-lifetime-repayments.md index 5a630e096..dc42cc896 100644 --- a/docs/academy/tutorials/provable-mlr-forecasting-aaves-lifetime-repayments.md +++ b/docs/academy/tutorials/provable-mlr-forecasting-aaves-lifetime-repayments.md @@ -299,14 +299,14 @@ Scarb is the Cairo package manager specifically created to streamline our Cairo To create a new Scarb project, open your terminal and run: ```sh -scarb new multiple_linear_regresion +scarb new multiple_linear_regression ``` A new project folder should be created for you and make sure to replace the content in Scarb.toml file with the following code: ```toml [package] -name = "multiple_linear_regresion" +name = "multiple_linear_regression" version = "0.1.0" [dependencies] orion = { git = "https://github.com/gizatechxyz/onnx-cairo" } @@ -400,7 +400,7 @@ use orion::operators::tensor::{ FP16x16TensorDiv, FP16x16TensorMul }; use orion::numbers::{FP16x16, FixedTrait}; -use multiple_linear_regresion::helper_functions::{ +use multiple_linear_regression::helper_functions::{ get_tensor_data_by_row, transpose_tensor, calculate_mean, calculate_r_score, normalize_user_x_inputs, rescale_predictions }; @@ -507,8 +507,8 @@ use orion::operators::tensor::{ FP16x16TensorDiv, FP16x16TensorMul }; use orion::numbers::{FP16x16, FixedTrait}; -use multiple_linear_regresion::data_preprocessing::{Dataset, DatasetTrait}; -use multiple_linear_regresion::helper_functions::{ +use multiple_linear_regression::data_preprocessing::{Dataset, DatasetTrait}; +use multiple_linear_regression::helper_functions::{ get_tensor_data_by_row, transpose_tensor, calculate_mean, calculate_r_score, normalize_user_x_inputs, rescale_predictions }; @@ -562,11 +562,11 @@ impl RegressionOperation of MultipleLinearRegressionModelTrait { } fn MultipleLinearRegression(dataset: Dataset) -> MultipleLinearRegressionModel { - let x_values_tranposed = transpose_tensor(dataset.x_values); - let x_values_tranposed_with_bias = add_bias_term(x_values_tranposed, 0); - let decorrelated_x_features = decorrelate_x_features(x_values_tranposed_with_bias); + let x_values_transposed = transpose_tensor(dataset.x_values); + let x_values_transposed_with_bias = add_bias_term(x_values_transposed, 0); + let decorrelated_x_features = decorrelate_x_features(x_values_transposed_with_bias); let coefficients = compute_gradients( - decorrelated_x_features, dataset.y_values, x_values_tranposed_with_bias + decorrelated_x_features, dataset.y_values, x_values_transposed_with_bias ); return MultipleLinearRegressionModel { coefficients }; } @@ -1009,15 +1009,15 @@ At this stage, we have already implemented all the important sections of this tu use debug::PrintTrait; use array::{ArrayTrait, SpanTrait}; -use multiple_linear_regresion::datasets::aave_data::aave_x_features::aave_x_features; -use multiple_linear_regresion::datasets::aave_data::aave_y_labels::aave_y_labels; -use multiple_linear_regresion::datasets::user_inputs_data::aave_weth_revenue_data_input::{aave_weth_revenue_data_input }; +use multiple_linear_regression::datasets::aave_data::aave_x_features::aave_x_features; +use multiple_linear_regression::datasets::aave_data::aave_y_labels::aave_y_labels; +use multiple_linear_regression::datasets::user_inputs_data::aave_weth_revenue_data_input::{aave_weth_revenue_data_input }; -use multiple_linear_regresion::model::multiple_linear_regression_model::{ +use multiple_linear_regression::model::multiple_linear_regression_model::{ MultipleLinearRegressionModel, MultipleLinearRegression, MultipleLinearRegressionModelTrait }; -use multiple_linear_regresion::data_preprocessing::{Dataset, DatasetTrait}; -use multiple_linear_regresion::helper_functions::{get_tensor_data_by_row, transpose_tensor, calculate_mean , +use multiple_linear_regression::data_preprocessing::{Dataset, DatasetTrait}; +use multiple_linear_regression::helper_functions::{get_tensor_data_by_row, transpose_tensor, calculate_mean , calculate_r_score, normalize_user_x_inputs, rescale_predictions}; use orion::numbers::{FP16x16, FixedTrait}; @@ -1081,10 +1081,10 @@ Finally, we can execute the test file by running: ```shell >> scarb cairo-test -f multiple_linear_regression_test -testing multiple_linear_regresion ... +testing multiple_linear_regression ... running 1 tests -test multiple_linear_regresion::test::multiple_linear_regression_test ... +test multiple_linear_regression::test::multiple_linear_regression_test ... test result: ok. 1 passed; 0 failed; 0 ignored; 0 filtered out; ```