-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_cnnModel.py
109 lines (91 loc) · 3.04 KB
/
my_cnnModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
#dense for fully connectd layer creation
#initalising the neural network model
classifier=Sequential()
#adding the convolutionl layer
#using tensorflow backend
classifier.add(Conv2D(32, (3, 3), input_shape=(128,128, 3), activation="relu"))
#adding the maxpooling layer
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Conv2D(32, (3, 3), activation="relu"))
#adding the maxpooling layer
classifier.add(MaxPooling2D(pool_size=(2,2)))
#adding the flattening layer
classifier.add(Flatten())
#adding fully connected layer
#hidden layer over here of our ann
classifier.add(Dense(activation="relu",units=128))
classifier.add(Dense(activation="relu",units=64))
classifier.add(Dense(activation="relu",units=32))
classifier.add(Dense(activation="relu",units=32))
#adding output layer
#here we are having five classes
classifier.add(Dense(activation='softmax',units=10))
#classifier
#compiling the neural net
#adam is stocatic gradient descent algo
classifier.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
'''
#image preprocessing step
#image augmentation step
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory(
'dataset/training_set',
target_size=(128,128),
batch_size=32,
class_mode='categorical')
test_set = test_datagen.flow_from_directory(
'dataset/test_set',
target_size=(128,128),
batch_size=32,
class_mode='categorical')
'''
'''
classifier.fit_generator(
training_set,
steps_per_epoch=700,
epochs=25,
validation_data=test_set,
validation_steps=150)
classifier.save('mymodel.h5')
classifier.save_weights('mymodel_weights.h5')
'''
'''
import cv2
import numpy as np
img=cv2.imread('dataset/single_prediction/cat_or_dog_1.jpg')
img1=cv2.imread('dataset/single_prediction/cat_or_dog_2.jpg')
img=cv2.resize(img,(32,32))
img=np.reshape(img,[1,32,32,3])
img1=cv2.resize(img1,(32,32))
img1=np.reshape(img1,[1,32,32,3])
#here 1st argument coreponds to batch
#2,3,4 arguments include image height,width,number of channels
classes=classifier.predict(img)
classes1=classifier.predict(img1)
#for single prediction(testing)
import numpy as np
from keras.preprocessing import image
test_image = image.load_img('dataset/single_prediction/cat_or_dog_2.jpg', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = classifier.predict(test_image)
training_set.class_indices
if result[0][0] == 1:
prediction = 'dog'
else:
prediction = 'cat'
model_json = classifier.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
'''