-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathmeshes2dataset.py
203 lines (176 loc) · 8.05 KB
/
meshes2dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""This script takes a directory of meshes and generates a (D)SIF dataset.
The dataset can be used for training, evaluation, and inference on ldif models.
"""
import glob
import random
import os
from absl import app
from absl import flags
# pylint: disable=g-multiple-import
from joblib import Parallel, delayed
# pylint: enable=g-multiple-import
import tqdm
import tensorflow as tf
# LDIF is local code, should be imported last.
# pylint: disable=g-bad-import-order
from ldif.datasets import process_element
from ldif.scripts import make_example
from ldif.util import file_util
from ldif.util import path_util
from ldif.util.file_util import log
# pylint: enable=g-bad-import-order
FLAGS = flags.FLAGS
flags.DEFINE_string('mesh_directory', '', 'Path to meshes. This folder should'
' have the structure <root>/{train,test,val}/<class>/*.ply')
flags.DEFINE_string('dataset_directory', '', 'Path to output dataset.')
flags.DEFINE_boolean(
'skip_existing', True, 'Whether to skip process examples'
' that are already written into the output dataset. True'
' enables completing a processing run that crashed, or '
' adding examples to a dataset that already exists with'
' partial overlap. False enables updating a dataset'
' in-place.')
flags.DEFINE_integer(
'max_threads', -1, 'The maximum number of threads to use.'
' If -1, will allocate all available threads on CPU.')
flags.DEFINE_string('log_level', 'INFO',
'One of VERBOSE, INFO, WARNING, ERROR. Sets logs to print '
'only at or above the specified level.')
flags.DEFINE_boolean(
'optimize', True, 'Whether to create an optimized tfrecords '
'dataset. This will substantially improve IO throughput, at '
'the expense of approximately doubling disk usage and adding '
'a moderate amount of additional dataset creation time. '
'Recommended unless disk space is very tight or data is stored '
'on a local NVMe drive or similar.')
flags.DEFINE_boolean(
'trample_optimized', True, 'Whether to erase and re-create '
'optimized files. Set True if changes have been made to the '
'dataset since the last time meshes2dataset was run; set '
'False to complete optimization if it was halted midway.')
flags.DEFINE_boolean(
'optimize_only', False, 'Whether to skip dataset creation '
'and only write tfrecords files.')
def process_one(f, mesh_directory, dataset_directory, skip_existing, log_level):
"""Processes a single mesh, adding it to the dataset."""
relpath = f.replace(mesh_directory, '')
assert relpath[0] == '/'
relpath = relpath[1:]
split, synset = relpath.split('/')[:2]
log.verbose(f'The split is {split} and the synset is {synset}')
name = os.path.basename(f)
name, extension = os.path.splitext(name)
valid_extensions = ['.ply']
if extension not in valid_extensions:
raise ValueError(f'File with unsupported extension {extension} found: {f}.'
f' Only {valid_extensions} are supported.')
output_dir = f'{dataset_directory}/{split}/{synset}/{name}/'
# This is the last file the processing writes, if it already exists the
# example has already been processed.
final_file_written = f'{output_dir}/depth_and_normals.npz'
make_example.mesh_to_example(
os.path.join(path_util.get_path_to_ldif_parent(), 'ldif'), f,
f'{dataset_directory}/{split}/{synset}/{name}/', skip_existing, log_level)
return output_dir
def serialize(example_dir, log_level):
d = process_element.load_example_dict(example_dir, log_level)
s = process_element.make_tf_example(d)
return s
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
random.seed(2077)
log.set_level(FLAGS.log_level)
n_jobs = os.cpu_count()
assert FLAGS.max_threads != 0
if FLAGS.max_threads > 0:
n_jobs = FLAGS.max_threads
mesh_directory = FLAGS.mesh_directory
if mesh_directory[-1] == '/':
mesh_directory = mesh_directory[:-1]
files = glob.glob(f'{mesh_directory}/*/*/*.ply')
if not files and not FLAGS.optimize_only:
raise ValueError(f"Didn't find any ply files in {mesh_directory}. "
"Please make sure the directory structure is "
"[mesh_directory]/[splits]/[class names]/[ply files]")
# Make the directories first because it's not threadsafe and also might fail.
if files and not FLAGS.optimize_only:
log.info('Creating directories...')
for i, f in tqdm.tqdm(enumerate(files)):
relpath = f.replace(mesh_directory, '')
# log.info(f'Relpath: {relpath}')
assert relpath[0] == '/'
relpath = relpath[1:]
split, synset = relpath.split('/')[:2]
if not os.path.isdir(f'{FLAGS.dataset_directory}/{split}'):
os.makedirs(f'{FLAGS.dataset_directory}/{split}')
if not os.path.isdir(f'{FLAGS.dataset_directory}/{split}/{synset}'):
os.mkdir(f'{FLAGS.dataset_directory}/{split}/{synset}')
log.info('Making dataset...')
# Flags can't be pickled:
output_dirs = Parallel(n_jobs=n_jobs)(
delayed(process_one)(f, mesh_directory, FLAGS.dataset_directory,
FLAGS.skip_existing, FLAGS.log_level) for f in tqdm.tqdm(files))
log.info('Making dataset registry...')
else:
output_dirs = glob.glob(f'{FLAGS.dataset_directory}/*/*/*/surface_samples_from_dodeca.pts')
output_dirs = [os.path.dirname(f) + '/' for f in output_dirs]
output_dirs.sort() # So randomize with a fixed seed always results in the same order
splits = {x.split('/')[-4] for x in output_dirs}
if 'optimized' in splits:
raise ValueError(f'The keyword "optimized" cannot be used for a split name, it is reserved.')
for split in splits:
elements_of_split = [x for x in output_dirs if x.split('/')[-4] == split]
with open(f'{FLAGS.dataset_directory}/{split}.txt', 'wt') as f:
f.write('\n'.join(elements_of_split) + '\n')
log.info('Done!')
if FLAGS.optimize:
log.info('Precomputing optimized tfrecord files...')
opt_dir = f'{FLAGS.dataset_directory}/optimized'
if FLAGS.trample_optimized and os.path.isdir(opt_dir):
for f in os.listdir(opt_dir):
if f.endswith('.tfrecords'):
os.remove(os.path.join(opt_dir, f))
if not os.path.isdir(opt_dir):
os.mkdir(opt_dir)
for split in splits:
log.info(f'Optimizing split {split}...')
elements_of_split = [x for x in output_dirs if x.split('/')[-4] == split]
examples_per_shard=64
# Make sure shards are totally random:
random.shuffle(elements_of_split)
n_shards = int(len(elements_of_split) / examples_per_shard)
if len(elements_of_split) % examples_per_shard:
n_shards += 1
shard_dir = f'{FLAGS.dataset_directory}/optimized/{split}'
if not os.path.isdir(shard_dir):
os.mkdir(shard_dir)
for shard_idx in tqdm.tqdm(range(n_shards)):
shard_name = f'{shard_dir}/{split}-%.5d-of-%.5d.tfrecords' % (shard_idx, n_shards)
if not FLAGS.trample_optimized and os.path.isfile(shard_name):
continue
start_idx = shard_idx * examples_per_shard
end_idx = (shard_idx + 1) * examples_per_shard
options = tf.io.TFRecordOptions(tf.compat.v1.io.TFRecordCompressionType.GZIP)
with tf.io.TFRecordWriter(shard_name, options=options) as writer:
to_process = elements_of_split[start_idx:end_idx]
serialized = Parallel(n_jobs=n_jobs)(delayed(serialize)(d, FLAGS.log_level)
for d in to_process)
for s in serialized:
writer.write(s)
if __name__ == '__main__':
app.run(main)