-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathmathutil.cc
55 lines (48 loc) · 1.64 KB
/
mathutil.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
// Copyright 2010-2025 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if defined(_MSC_VER)
#define _USE_MATH_DEFINES
#include <cmath>
#endif
#include "ortools/base/logging.h"
#include "ortools/base/mathutil.h"
namespace operations_research {
// The formula is extracted from the following page
// http://en.wikipedia.org/w/index.php?title=Stirling%27s_approximation
double MathUtil::Stirling(double n) {
static const double kLog2Pi = log(2 * M_PI);
const double logN = log(n);
return (n * logN - n + 0.5 * (kLog2Pi + logN) // 0.5 * log(2 * M_PI * n)
+ 1 / (12 * n) - 1 / (360 * n * n * n));
}
double MathUtil::LogCombinations(int n, int k) {
CHECK_GE(n, k);
CHECK_GT(n, 0);
CHECK_GE(k, 0);
// use symmetry to pick the shorter calculation
if (k > n / 2) {
k = n - k;
}
// If we have more than 30 logarithms to calculate, we'll use
// Stirling's approximation for log(n!).
if (k > 15) {
return Stirling(n) - Stirling(k) - Stirling(n - k);
} else {
double result = 0;
for (int i = 1; i <= k; i++) {
result += log(n - k + i) - log(i);
}
return result;
}
}
} // namespace operations_research