-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathmultiple_knapsack_mip.py
109 lines (96 loc) · 3.54 KB
/
multiple_knapsack_mip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#!/usr/bin/env python3
# Copyright 2010-2025 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""Solve a multiple knapsack problem using a MIP solver."""
# [START import]
from ortools.linear_solver import pywraplp
# [END import]
def main():
# [START data]
data = {}
data["weights"] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
data["values"] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
assert len(data["weights"]) == len(data["values"])
data["num_items"] = len(data["weights"])
data["all_items"] = range(data["num_items"])
data["bin_capacities"] = [100, 100, 100, 100, 100]
data["num_bins"] = len(data["bin_capacities"])
data["all_bins"] = range(data["num_bins"])
# [END data]
# Create the mip solver with the SCIP backend.
# [START solver]
solver = pywraplp.Solver.CreateSolver("SCIP")
if solver is None:
print("SCIP solver unavailable.")
return
# [END solver]
# Variables.
# [START variables]
# x[i, b] = 1 if item i is packed in bin b.
x = {}
for i in data["all_items"]:
for b in data["all_bins"]:
x[i, b] = solver.BoolVar(f"x_{i}_{b}")
# [END variables]
# Constraints.
# [START constraints]
# Each item is assigned to at most one bin.
for i in data["all_items"]:
solver.Add(sum(x[i, b] for b in data["all_bins"]) <= 1)
# The amount packed in each bin cannot exceed its capacity.
for b in data["all_bins"]:
solver.Add(
sum(x[i, b] * data["weights"][i] for i in data["all_items"])
<= data["bin_capacities"][b]
)
# [END constraints]
# Objective.
# [START objective]
# Maximize total value of packed items.
objective = solver.Objective()
for i in data["all_items"]:
for b in data["all_bins"]:
objective.SetCoefficient(x[i, b], data["values"][i])
objective.SetMaximization()
# [END objective]
# [START solve]
print(f"Solving with {solver.SolverVersion()}")
status = solver.Solve()
# [END solve]
# [START print_solution]
if status == pywraplp.Solver.OPTIMAL:
print(f"Total packed value: {objective.Value()}")
total_weight = 0
for b in data["all_bins"]:
print(f"Bin {b}")
bin_weight = 0
bin_value = 0
for i in data["all_items"]:
if x[i, b].solution_value() > 0:
print(
f"Item {i} weight: {data['weights'][i]} value:"
f" {data['values'][i]}"
)
bin_weight += data["weights"][i]
bin_value += data["values"][i]
print(f"Packed bin weight: {bin_weight}")
print(f"Packed bin value: {bin_value}\n")
total_weight += bin_weight
print(f"Total packed weight: {total_weight}")
else:
print("The problem does not have an optimal solution.")
# [END print_solution]
if __name__ == "__main__":
main()
# [END program]