-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy patharguments.py
172 lines (141 loc) · 5.74 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
from argparse import ArgumentParser, Namespace
import sys
import os
import datetime
from relighting.light_directions import *
class GroupParams:
pass
class ParamGroup:
def __init__(self, parser: ArgumentParser, name : str, fill_none = False):
group = parser.add_argument_group(name)
for key, _value in vars(self).items():
shorthand = False
if key.startswith("_"):
shorthand = True
key = key[1:]
t = type(_value)
value = _value if not fill_none else None
if shorthand:
if t == bool:
if _value:
group.add_argument("--no_" + key, ("-" + key[0:1]), default=value, action="store_false", dest=key)
else:
group.add_argument("--" + key, ("-" + key[0:1]), default=value, action="store_true")
elif t == list:
group.add_argument("--" + key, ("-" + key[0:1]), default=value, nargs="+", type=type(_value[0]))
else:
group.add_argument("--" + key, ("-" + key[0:1]), default=value, type=t)
else:
if t == bool:
if _value:
group.add_argument("--no_" + key, default=value, action="store_false", dest=key)
else:
group.add_argument("--" + key, default=value, action="store_true")
elif t == list:
group.add_argument("--" + key, default=value, nargs="+", type=type(_value[0]))
else:
group.add_argument("--" + key, default=value, type=t)
def extract(self, args):
group = GroupParams()
for arg in vars(args).items():
if arg[0] in vars(self) or ("_" + arg[0]) in vars(self):
setattr(group, arg[0], arg[1])
return group
class ModelParams(ParamGroup):
def __init__(self, parser, sentinel=False):
self._source_path = ""
self._model_path = ""
self._images = "images"
self._resolution = [1536, 1024]
self._white_background = False
self.eval = False
self.freeze_geometry = False
self.label = ""
self.halfres = False
self.train_dirs = BACKWARD_DIR_IDS # backward dirs only
self.camera_ids = [-1] # -1 alone means train on all views
self.preview_dirs = [LEFT_DIR_ID, RIGHT_DIR_ID, TOP_DIR_ID, BACK_DIR_ID]
self.light_vector_size = 64
self.light_vector_lr = 0.001
self.n_neurons = 128
self.skip_images = 0
self.max_images = 999999999
self.num_encodings_view = 4
self.num_encodings_light = 4
self.train_after_resume = False
self.densify_after_resume = False
self.num_warmup_iters = 5000
self.num_feat_per_gaussian_channel = 16
self.use_key_views = True
self.key_view_every_k_step = 3
self.znear_pruning = True # if enabled and znear_fraction !=, prune the gaussians that move in front of any camera's near clipping plane
self.znear_quantile = 0.01
self.znear_scale = 0.9
super().__init__(parser, "Loading Parameters", sentinel)
def extract(self, args):
g = super().extract(args)
g.source_path = os.path.abspath(g.source_path)
g.preview_dirs = [ x for x in g.preview_dirs if x in g.train_dirs ]
if g.preview_dirs == []:
g.preview_dirs = g.train_dirs
if g.halfres:
g.resolution = [768, 512]
return g
class PipelineParams(ParamGroup):
def __init__(self, parser):
self.convert_SHs_python = False
self.compute_cov3D_python = False
self.rand_background = False
self.load_iter = 0 # which itertion to load from, 0 means disabled
super().__init__(parser, "Pipeline Parameters")
class OptimizationParams(ParamGroup):
def __init__(self, parser):
self.iterations = 30_000
self.position_lr_init = 0.00016
self.position_lr_final = 0.0000016
self.position_lr_delay_mult = 0.01
self.feature_lr = 0.0025
self.opacity_lr = 0.05
self.scaling_lr = 0.001
self.rotation_lr = 0.001
self.mlp_lr = 0.001
self.percent_dense = 0.01
self.lambda_dssim = 0.2
self.lambda_lpips = 0.0 # 0.1, 0.05 seem to converge
self.densify_from_iter = 500
self.densify_grad_threshold = 0.0002
self.posititon_lr_max_steps = 30_000
self.densification_interval = 100
self.opacity_reset_interval = 3000
self.densify_until_iter = 15_000
self.viewer = False
super().__init__(parser, "Optimization Parameters")
def get_combined_args(parser : ArgumentParser):
cmdlne_string = sys.argv[1:]
cfgfile_string = "Namespace()"
args_cmdline = parser.parse_args(cmdlne_string)
try:
cfgfilepath = os.path.join(args_cmdline.model_path, "cfg_args")
print("Looking for config file in", cfgfilepath)
with open(cfgfilepath) as cfg_file:
print("Config file found: {}".format(cfgfilepath))
cfgfile_string = cfg_file.read()
except TypeError:
print("Config file not found at")
pass
args_cfgfile = eval(cfgfile_string)
merged_dict = vars(args_cfgfile).copy()
for k,v in vars(args_cmdline).items():
if v != None:
merged_dict[k] = v
return Namespace(**merged_dict)