Skip to content

Latest commit

 

History

History
66 lines (41 loc) · 2.21 KB

setup-manual.md

File metadata and controls

66 lines (41 loc) · 2.21 KB

Setup graph-app-kit

For quick launchers, see the AWS quick launch setup guide.

1. Launch and setup a server for Docker + extensions

Manual: Launch a Linux server and install, configure dependencies

  • Open ports: 22, 80, 443, 8501 for all users (0.0.0.0/0) or for specific admin and user IPs

  • Ubuntu 18.04 LTS is the most common choice for containerized GPU computing

  • Install docker-ce and docker-compose

  • Optional:

    • GPU: If you have a RAPIDS.ai-compatible GPU (see below), install the Nvidia docker runtime and set it as the default for Docker daemons

    • Extensions: Install Jupyter, a reverse proxy (ex: Caddy), and an authentication system

Note: GPU Instances: Cloud providers generally require you to request GPU capacity quota for your account, which may take 1 day. RAPIDS.ai-compatible GPU instance types include:

  • AWS: g4, p3, p4
  • Azure: NC6s_v2+, ND+, NCasT4

2. Download graph-app-kit

git clone https://github.com/graphistry/graph-app-kit.git

3. Build

cd graph-app-kit/src/docker
sudo docker-compose build

4. Set your Graphistry visualization credentials

Get a public or private Graphistry account:

Edit src/docker/.env with:

GRAPHISTRY_USERNAME=your_username
GRAPHISTRY_PASSWORD=your_password
### OPTIONAL: Add if a private/local Graphistry server
#GRAPHISTRY_PROTOCOL=http or https
#GRAPHISTRY_SERVER=your.private-server.net

5. Start & stop

cd src/docker and then:

  • Start: sudo docker-compose up -d
  • Use: Go to http://localhost:8501/dashboard (or whatever the public IP)
  • Stop: sudo docker-compose down -v

Graph!

You are now ready to add custom views and add integrations.