-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathcalibrate.py
494 lines (382 loc) · 13.8 KB
/
calibrate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import pandas as pd
import numpy as np
import numba as nb
import json
import matplotlib.pyplot as plt
import statsmodels.api as sm
import micro.fitting.preprocess
import micro.fitting.ml
from alpha.solver import (
ShortTermAlpha_Finite_Difference_Solver,
ShortTermAlpha
)
def prepare_dataframe(df):
df["time"] = pd.to_datetime(
df["timestamp"], format="%Y-%m-%dD%H:%M:%S.%f")
df.index = pd.DatetimeIndex(df["time"])
df = df.rename(columns={'bidSize': 'bs', 'askSize':
'as', 'bidPrice': 'bid', 'askPrice': 'ask'})
return df
def create_date_strings(start_date, end_date):
def month_str(month):
if month < 10:
return f"0{month}"
else:
return f"{month}"
def day_str(day):
if day < 10:
return f"0{day}"
else:
return f"{day}"
if end_date < start_date:
raise ValueError("Check dates")
range = pd.date_range(start=start_date, end=end_date, freq='D')
dates = []
for date in range:
dates.append(f"{date.year}{month_str(date.month)}{day_str(date.day)}")
return dates
def load_data(symbol, store_path, store_name, start, end):
dates = create_date_strings(start, end)
frames = []
for date in dates:
try:
df = pd.read_csv(f"{store_path}/{store_name}-{date}")
df = df[df["symbol"] == symbol]
df = prepare_dataframe(df)
frames.append(df)
print("Loaded quotes for date: ", date)
except Exception as ex:
print(ex)
pass
df = pd.concat(frames)
df.index = df["time"]
return df
@nb.jit
def compute_microprice_forecast(
microprice, spread, mid_price, imb_bucket, time_index, millis_horizon):
"""
Backtest Micro-Price forecast against realized mid-price changes.
"""
assert(len(mid_price) == len(time_index))
result = []
i = 0
while i < len(time_index):
t0 = time_index[i]
j = i + 1
found = False
while j < len(time_index):
t1 = time_index[j]
nanos = t1 - t0
millis = nanos / 1000000 # time index is in nanoseconds
if millis >= millis_horizon:
imb = imb_bucket[i]
mp = microprice[i]
mid0 = mid_price[i]
mid1 = mid_price[j]
s = spread[i]
entry = np.zeros(9)
entry[0] = t0 # reference time
entry[1] = t1 # reference time + horizon milliseconds
entry[2] = mid0 # mid at time t0
entry[3] = mid1 # mid at time t1
entry[4] = mid1 - mid0 # real change in mid-price
entry[5] = mp # micro-price as observed at time t0
entry[6] = mp - mid0 # forecasted change in mid-price
entry[7] = imb # imbalance that motivates microprice
entry[8] = s # spread at time t0
result.append(entry)
i = j
found = True
break
else:
j += 1
if not found:
i += 1
return result
@nb.jit
def create_uniform_imbalance_series(imbalance, time_index, millis_horizon):
"""
Creates time-uniform order book imbalance series. This data is used to
fit Ornstein - Uhlenbeck process to the imbalance time series. These
parameters are used to fit the trading model.
"""
assert(len(imbalance) == len(time_index))
result = []
i = 0
while i < len(time_index):
t0 = time_index[i]
i0 = imbalance[i]
j = i + 1
found = False
while j < len(time_index):
t1 = time_index[j]
nanos = t1 - t0
millis = nanos / 1000000 # time index is in nanoseconds
if millis >= millis_horizon:
i1 = imbalance[j]
entry = np.zeros(7)
entry[0] = t0 # reference time t0
entry[1] = t1 # reference time t0 + horizon milliseconds
entry[2] = i0 # imbalance at time t0
entry[3] = i1 # imbalance at time t1
entry[4] = 2*i0 - 1 # scaled imbalance as of time t0
entry[5] = 2*i1 - 1 # scaled imbalance as of time t1
entry[6] = i1 - i0 # change in imbalance from t0 to t1
result.append(entry)
i = j
found = True
break
else:
j += 1
if not found:
i += 1
return result
def save_excel(decisions, inventory_levels, signal_levels):
opt_dec = pd.DataFrame(
data=decisions,
index=inventory_levels,
columns=signal_levels)
opt_dec.to_excel("solution.xlsx")
def calibrate_microprice(config):
"""
Calibrates Stoikov's Micro-Price model to BitMEX market data.
"""
# Load raw L1 data
raw_l1_data = load_data(
config["symbol"],
"store.quote",
config["store-name"],
config["start-date"],
config["end-date"])
# Create training data for micro-price
calib_data = micro.fitting.preprocess.create_training_data(
raw_l1_data,
config["tick-size"],
config["n-spread"],
config["mid-decimals"],
config["buckets"])
# Fit micro-price model
model = micro.fitting.ml.estimate(
calib_data,
config["n-spread"],
config["tick-size"],
config["mid-decimals"],
config["buckets"])
# Compute adjustments
Gstar, Bstar = model.calc_price_adj()
# Save micro-price adjustments
save_dir = f'{config["write-path"]}'
filename = f'{config["symbol"]}-{config["store-name"]}-model.csv'
Gstar.to_csv(f'{save_dir}/{filename}')
# Compute micro-price adjustments
calib_data = calib_data.merge(
Gstar, how='left',
on=['spread', 'imb_bucket'])
# Compute micro-price
calib_data["mp"] = calib_data["mid"] + calib_data["mp_adj"]
plot_model_vs_data(calib_data, config)
return calib_data, Gstar, Bstar
def estimate_trade_arrival_rates(config):
"""
Estimates trade arrival rates per 1000 millisecond period
"""
import scipy.stats as ss
# Load trades
trades = load_data(
config["symbol"],
"store.trade",
config["store-name"],
config["start-date"],
config["end-date"])
# Aggregate sales into 1 second time buckets
sales = trades['size'].loc[trades['side'] == 'Sell']
sales_agg = sales.resample('1s').sum()
lamda_m = ss.expon.fit(sales_agg, floc=0)[1]
# Aggregate purchases into 1 second time buckets
purchases = trades['size'].loc[trades['side'] == 'Buy']
purchases_agg = purchases.resample('1s').sum().mean()
lamda_p = ss.expon.fit(purchases_agg, floc=0)[1]
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(sales)
plt.title('Sales during 1000 ms time buckets')
plt.suptitle(f'Symbol: {config["symbol"]}')
ax.set_ylabel('Traded Size')
fig.savefig(f'graphs/{config["symbol"]}_lamda_m.png',
bbox_inches='tight')
fig, ax = plt.subplots(figsize=(6, 4))
ax.hist(sales, bins=1000, color='blue', alpha=0.5)
ax.axvline(x=lamda_m, color='red', lw=2)
ax.set_xlim([0, 3*sales.std()])
ax.set_xlabel('Traded size')
ax.set_ylabel('Observations')
plt.suptitle(f'Symbol: {config["symbol"]}')
plt.title('Trade size distribution')
fig.savefig(f'graphs/{config["symbol"]}_sales_hist.png',
bbox_inches='tight')
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(purchases)
plt.title('Purchases during 1000 ms time buckets')
plt.suptitle(f'Symbol: {config["symbol"]}')
ax.set_ylabel('Traded Size')
fig.savefig(f'graphs/{config["symbol"]}_lamda_p.png',
bbox_inches='tight')
fig, ax = plt.subplots(figsize=(6, 4))
ax.hist(purchases, bins=1000, color='blue', alpha=0.5)
ax.axvline(x=lamda_m, color='red', lw=2)
ax.set_xlim([0, 3*sales.std()])
ax.set_xlabel('Traded size')
ax.set_ylabel('Observations')
plt.suptitle(f'Symbol: {config["symbol"]}')
plt.title('Trade size distribution')
fig.savefig(f'graphs/{config["symbol"]}_purchases_hist.png',
bbox_inches='tight')
return lamda_m, lamda_p
def plot_model_vs_data(data, config):
# "Backtest" Micro-Price forecast
forecasts = compute_microprice_forecast(
data["mp"].values,
data["spread"].values,
data["mid"].values,
data["imb_bucket"].values,
data["time"].values.astype(np.int64),
1000)
forecasts = pd.DataFrame(forecasts)
forecasts.columns = [
't0', 't1', 'mid0', 'mid1', 'dmid',
'mp0', 'mp_adj', 'imb_bucket', 'spread'
]
# Let's compute mean historical mid-price changes and
# average microprice forecasts given imbalance bucket
buckets = sorted(data["imb_bucket"].value_counts().index.values)
mean_changes = []
mean_forecasts = []
for bucket in buckets:
mean_changes.append(
forecasts["dmid"].loc[
(forecasts["imb_bucket"] == bucket) &
(forecasts["spread"] == 1)].mean())
mean_forecasts.append(
forecasts["mp_adj"].loc[
(forecasts["imb_bucket"] == bucket) &
(forecasts["spread"] == 1)].mean())
fig, ax = plt.subplots(figsize=(6, 5))
ax.plot(buckets, mean_forecasts,
color='blue', marker='o', lw=2, label='Model')
ax.plot(buckets, mean_changes,
color='red', marker='o', lw=2, label='Realized')
plt.legend()
plt.title('Mid-Price Change forecast (1000 milliseconds)')
plt.suptitle(f'Symbol: {config["symbol"]}')
ax.set_ylabel('Change in Mid-Price')
ax.set_xticklabels(np.round(np.arange(0, 1.1, 0.1), 2))
ax.set_xlabel('Order Book Imbalance')
fig.savefig(f'graphs/{config["symbol"]}_calibrated.pdf',
bbox_inches='tight')
fig.savefig(f'graphs/{config["symbol"]}_calibrated.png',
bbox_inches='tight')
def calibrate_nbbo_trading_model(mp_calib_data, config):
# Estimate trade arrival rates
lamda_m, lamda_p = estimate_trade_arrival_rates(config)
# Compute imbalance approximation to micro-price
beta = estimate_imbalance_beta(mp_calib_data)
# Compute imbalance Ornstein-Uhlenbeck parameters
zeta, eta = estimate_imbalance_ou_process(mp_calib_data, config)
model_params = config["model-params"]
sta = ShortTermAlpha(zeta, 0.01, eta, beta)
T = model_params["terminal-time"]
N = model_params["finite-difference-steps"]
# Create inventory grid
q_min = model_params["min-inventory"]
q_max = model_params["max-inventory"]
q_grid = np.arange(q_min, q_max + 1, 1)
# Create time grid
dt = T / 5000
t_grid = np.arange(0, T + dt, dt)
# Penalty parameters
inv_pen = 0#model_params["inventory-penalty"]
ter_pen = 0#model_params["terminal-penalty"]
# Half of typical bid-ask spread
half_spread = 0.5 * config["tick-size"]
h, lp, lm = ShortTermAlpha_Finite_Difference_Solver.solve_tob_postings(
sta,
q_grid,
t_grid,
half_spread,
ter_pen,
inv_pen,
dt,
lamda_p,
lamda_m)
# Create optimal posting matrix
l_p = np.zeros((lp.shape[0], lp.shape[1]))
l_m = np.zeros((lp.shape[0], lp.shape[1]))
l_p[lp[:, :, 50] == True] = 1
l_p[lp[:, :, 50] == False] = 0
l_m[lm[:, :, 50] == True] = 2
l_m[lm[:, :, 50] == False] = 0
decisions = l_m + l_p
save_excel(decisions, q_grid, sta.imbalance)
return decisions
def estimate_imbalance_beta(mp_calib_data):
"""
Estimates: MP-Adj ~ beta * (2 * imbalance - 1)
Parameters:
----------
mp_calib_data : pd.DataFrame
Microprice calibration dataset.
Returns:
-------
beta: slope coefficient
"""
X = 2 * mp_calib_data['imb'].loc[mp_calib_data.spread==1] - 1
y = mp_calib_data['mp_adj'].loc[mp_calib_data.spread==1]
ols_est = sm.OLS(y, X).fit()
beta = ols_est._results.params[0]
return beta
def estimate_imbalance_ou_process(mp_calib_data, config):
"""
Estimates: I_{t+1} = zeta*I_{t} + eta*dW_{t}
Parameters
----------
mp_calib_data : pd.DataFrame
Microprice calibration dataset.
config : dictionary
configuration parameters.
Returns
-------
zeta : float
Mean-reversion speed of order book imbalance.
eta : float
Volatility of order book imbalance.
"""
# imbalance values
imb_vals = mp_calib_data["imb"].values
# Create nanosecond time index
time_idx = mp_calib_data["time"].values.astype(np.int64)
# Make time deltas between observations uniform
imb_series = create_uniform_imbalance_series(
imb_vals, time_idx, 1000)
imb_series = pd.DataFrame(
data=imb_series)
# Fit linear model: {I_{t+1} = zeta*I_{t} + e_{t}, e_{t} ~ N(0, eta)
X = imb_series.values[:, 4]
y = imb_series.values[:, 6]
ols_est = sm.OLS(y, X).fit()
# mean-reversion speed
zeta = -ols_est._results.params[0]
# residual volatility
eta = imb_series[6].std()
return zeta, eta
#%%
def main():
#%%
# Load configuration
with open("calib.config.json") as f:
config = json.load(f)
# Calibrate Micro-Price model
calib_data, Gstar, Bstar = calibrate_microprice(config)
# Calibrate NBBO market making model
decisions = calibrate_nbbo_trading_model(calib_data, config)
#%%
if __name__ == '__main__':
main()