-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_exp_fig5.sh
153 lines (130 loc) · 5.47 KB
/
run_exp_fig5.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
gpuid=0
dataset='rparis6k'
dir_cache='data/'
log='log_fig5_'$dataset'.txt'
# attack params
scales_s0='[1024]'
scales_s1='[300,400,500,600,700,800,900,1024]'
scales_s2='[300,350,400,450,500,550,600,650,700,750,800,850,900,950,1024]'
scales_s3='[262,289,319,351,387,427,470,518,571,630,694,765,843,929,1024]'
carrier='flower'
lam=0.0
# attack params
scales=$scales_s0
arch='alexnet'
sigmablur=0.0
iter=100
mode='hist'
modellist=$arch"-"$mode
#attack
python3 attack_queries.py --dataset=$dataset --carrier=$carrier --mode=$mode --modellist=$modellist --scales=$scales --iters=$iter --lam=$lam --sigma-blur=$sigmablur --gpu-id=$gpuid
# test params
testpool='gem'
for testscale in $(seq 250 10 1020) 1024;
do
echo $testscale;
# evaluate retrieval performance
python3 eval_retrieval.py --gpu-id $gpuid --network-offtheshelf $arch"-"$testpool --dataset $dataset --image-size 1024 --image-resize $testscale --dir-attack "data/"$dataset"_"$modellist"+"$scales"+iter"$iter"+lr0.01+lam"$lam"+sigmablur"$sigmablur"_"$carrier"/" --ext-attack '.png' --dir-cache $dir_cache --log=$log
done
# attack params
scales=$scales_s0
arch='alexnet'
sigmablur=0.3
iter=100
mode='hist'
modellist=$arch"-"$mode
#attack
python3 attack_queries.py --dataset=$dataset --carrier=$carrier --mode=$mode --modellist=$modellist --scales=$scales --iters=$iter --lam=$lam --sigma-blur=$sigmablur --gpu-id=$gpuid
# test params
testpool='gem'
for testscale in $(seq 250 10 1020) 1024;
do
echo $testscale;
# evaluate retrieval performance
python3 eval_retrieval.py --gpu-id $gpuid --network-offtheshelf $arch"-"$testpool --dataset $dataset --image-size 1024 --image-resize $testscale --dir-attack "data/"$dataset"_"$modellist"+"$scales"+iter"$iter"+lr0.01+lam"$lam"+sigmablur"$sigmablur"_"$carrier"/" --ext-attack '.png' --dir-cache $dir_cache --log=$log
done
# attack params
scales=$scales_s1
arch='alexnet'
sigmablur=0.0
iter=100
mode='hist'
modellist=$arch"-"$mode
#attack
python3 attack_queries.py --dataset=$dataset --carrier=$carrier --mode=$mode --modellist=$modellist --scales=$scales --iters=$iter --lam=$lam --sigma-blur=$sigmablur --gpu-id=$gpuid
# test params
testpool='gem'
for testscale in $(seq 250 10 1020) 1024;
do
echo $testscale;
# evaluate retrieval performance
python3 eval_retrieval.py --gpu-id $gpuid --network-offtheshelf $arch"-"$testpool --dataset $dataset --image-size 1024 --image-resize $testscale --dir-attack "data/"$dataset"_"$modellist"+"$scales"+iter"$iter"+lr0.01+lam"$lam"+sigmablur"$sigmablur"_"$carrier"/" --ext-attack '.png' --dir-cache $dir_cache --log=$log
done
# attack params
scales=$scales_s2
arch='alexnet'
sigmablur=0.0
iter=100
mode='hist'
modellist=$arch"-"$mode
#attack
python3 attack_queries.py --dataset=$dataset --carrier=$carrier --mode=$mode --modellist=$modellist --scales=$scales --iters=$iter --lam=$lam --sigma-blur=$sigmablur --gpu-id=$gpuid
# test params
testpool='gem'
for testscale in $(seq 250 10 1020) 1024;
do
echo $testscale;
# evaluate retrieval performance
python3 eval_retrieval.py --gpu-id $gpuid --network-offtheshelf $arch"-"$testpool --dataset $dataset --image-size 1024 --image-resize $testscale --dir-attack "data/"$dataset"_"$modellist"+"$scales"+iter"$iter"+lr0.01+lam"$lam"+sigmablur"$sigmablur"_"$carrier"/" --ext-attack '.png' --dir-cache $dir_cache --log=$log
done
# attack params
scales=$scales_s1
arch='alexnet'
sigmablur=0.3
iter=100
mode='hist'
modellist=$arch"-"$mode
#attack
python3 attack_queries.py --dataset=$dataset --carrier=$carrier --mode=$mode --modellist=$modellist --scales=$scales --iters=$iter --lam=$lam --sigma-blur=$sigmablur --gpu-id=$gpuid
# test params
testpool='gem'
for testscale in $(seq 250 10 1020) 1024;
do
echo $testscale;
# evaluate retrieval performance
python3 eval_retrieval.py --gpu-id $gpuid --network-offtheshelf $arch"-"$testpool --dataset $dataset --image-size 1024 --image-resize $testscale --dir-attack "data/"$dataset"_"$modellist"+"$scales"+iter"$iter"+lr0.01+lam"$lam"+sigmablur"$sigmablur"_"$carrier"/" --ext-attack '.png' --dir-cache $dir_cache --log=$log
done
# attack params
scales=$scales_s2
arch='alexnet'
sigmablur=0.3
iter=100
mode='hist'
modellist=$arch"-"$mode
#attack
python3 attack_queries.py --dataset=$dataset --carrier=$carrier --mode=$mode --modellist=$modellist --scales=$scales --iters=$iter --lam=$lam --sigma-blur=$sigmablur --gpu-id=$gpuid
# test params
testpool='gem'
for testscale in $(seq 250 10 1020) 1024;
do
echo $testscale;
# evaluate retrieval performance
python3 eval_retrieval.py --gpu-id $gpuid --network-offtheshelf $arch"-"$testpool --dataset $dataset --image-size 1024 --image-resize $testscale --dir-attack "data/"$dataset"_"$modellist"+"$scales"+iter"$iter"+lr0.01+lam"$lam"+sigmablur"$sigmablur"_"$carrier"/" --ext-attack '.png' --dir-cache $dir_cache --log=$log
done
# attack params
scales=$scales_s3
arch='alexnet'
sigmablur=0.3
iter=100
mode='hist'
modellist=$arch"-"$mode
#attack
python3 attack_queries.py --dataset=$dataset --carrier=$carrier --mode=$mode --modellist=$modellist --scales=$scales --iters=$iter --lam=$lam --sigma-blur=$sigmablur --gpu-id=$gpuid
# test params
testpool='gem'
for testscale in $(seq 250 10 1020) 1024;
do
echo $testscale;
# evaluate retrieval performance
python3 eval_retrieval.py --gpu-id $gpuid --network-offtheshelf $arch"-"$testpool --dataset $dataset --image-size 1024 --image-resize $testscale --dir-attack "data/"$dataset"_"$modellist"+"$scales"+iter"$iter"+lr0.01+lam"$lam"+sigmablur"$sigmablur"_"$carrier"/" --ext-attack '.png' --dir-cache $dir_cache --log=$log
done