-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
351 lines (277 loc) · 15.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import os.path
import peft
import torch
from transformers import BertTokenizerFast, BertModel, BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM
import pandas as pd
import numpy as np
from torch import nn
from peft import PeftModel, LoraConfig, prepare_model_for_kbit_training, get_peft_model, TaskType
def merge_data(data):
merged_data = []
# 用于记录每个子列表开始的位置
start_positions = []
# 当前起始位置
current_position = 0
for sublist in data:
start_positions.append(current_position)
merged_data.extend(sublist)
current_position += len(sublist)
return merged_data, start_positions
def stack_and_pad_right(tensors):
# 找到第一维度的最大长度
max_len = max(tensor.shape[0] for tensor in tensors)
# 创建一个存放结果的列表
padded_tensors = []
padding_masks = []
for tensor in tensors:
# 计算需要填充的长度
pad_len = max_len - tensor.shape[0]
# 使用零填充
padded_tensor = torch.nn.functional.pad(tensor, (0, 0, 0, pad_len))
padded_tensors.append(padded_tensor)
# 创建填充位置的掩码
padding_mask = torch.cat([torch.ones(tensor.shape[0], dtype=torch.long),
torch.zeros(pad_len, dtype=torch.long)])
padding_masks.append(padding_mask)
# 堆叠所有填充后的张量
stacked_tensor = torch.stack(padded_tensors)
padding_masks = torch.stack(padding_masks)
return stacked_tensor, padding_masks
def stack_and_pad_left(tensors):
# 找到第一维度的最大长度
max_len = max(tensor.shape[0] for tensor in tensors)
# 创建一个存放结果的列表
padded_tensors = []
padding_masks = []
for tensor in tensors:
# 计算需要填充的长度
pad_len = max_len - tensor.shape[0]
# 使用零填充
padded_tensor = torch.nn.functional.pad(tensor, (0, 0, pad_len, 0))
padded_tensors.append(padded_tensor)
# 创建填充位置的掩码
padding_mask = torch.cat([torch.zeros(pad_len, dtype=torch.long),
torch.ones(tensor.shape[0], dtype=torch.long)])
padding_masks.append(padding_mask)
# 堆叠所有填充后的张量
stacked_tensor = torch.stack(padded_tensors)
padding_masks = torch.stack(padding_masks)
return stacked_tensor, padding_masks
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, # load the model into memory using 4-bit precision
bnb_4bit_use_double_quant=False, # use double quantition
bnb_4bit_quant_type="nf4", # use NormalFloat quantition
bnb_4bit_compute_dtype=torch.bfloat16 # use hf for computing when we need
)
class LogLLM(nn.Module):
def __init__(self, Bert_path, Llama_path, ft_path=None, is_train_mode=True, device = torch.device("cuda:0"), max_content_len = 128, max_seq_len = 128):
super().__init__()
self.max_content_len = max_content_len # max length of each log messages (contents)
self.max_seq_len = max_seq_len # max length of each log sequence (log sequence contains some log messages)
self.device = device
self.Llama_tokenizer = AutoTokenizer.from_pretrained(Llama_path, padding_side="right")
self.Llama_tokenizer.pad_token = self.Llama_tokenizer.eos_token
self.Llama_model = AutoModelForCausalLM.from_pretrained(Llama_path, quantization_config=bnb_config,
low_cpu_mem_usage=True,
device_map=device) # embedding dim = 4096
self.Bert_tokenizer = BertTokenizerFast.from_pretrained(Bert_path, do_lower_case=True)
self.Bert_model = BertModel.from_pretrained(Bert_path, quantization_config=bnb_config, low_cpu_mem_usage=True,
device_map=device)
self.projector = nn.Linear(self.Bert_model.config.hidden_size, self.Llama_model.config.hidden_size, device=device)
# self.projector = nn.Linear(self.Bert_model.config.hidden_size, self.Llama_model.config.hidden_size).half().to(device)
self.instruc_tokens = self.Llama_tokenizer(
['Below is a sequence of system log messages:', '. Is this sequence normal or anomalous? \\n'],
return_tensors="pt", padding=True).to(self.device)
# if is_train_mode:
# self.Bert_model = prepare_model_for_kbit_training(self.Bert_model)
# self.Llama_model = prepare_model_for_kbit_training(self.Llama_model)
if ft_path is not None:
print(f'Loading peft model from {ft_path}.')
Llama_ft_path = os.path.join(ft_path, 'Llama_ft')
Bert_ft_path = os.path.join(ft_path, 'Bert_ft')
projector_path = os.path.join(ft_path, 'projector.pt')
self.Llama_model = PeftModel.from_pretrained(
self.Llama_model,
Llama_ft_path,
is_trainable=is_train_mode,
torch_dtype=torch.float16,
)
self.Bert_model = PeftModel.from_pretrained(
self.Bert_model,
Bert_ft_path,
is_trainable=is_train_mode,
torch_dtype=torch.float16,
)
self.projector.load_state_dict(torch.load(projector_path, map_location=device))
else:
print(f'Creating peft model.')
Bert_peft_config = LoraConfig(task_type=TaskType.FEATURE_EXTRACTION,
r=4,
lora_alpha=32,
lora_dropout=0.01)
self.Bert_model = get_peft_model(self.Bert_model, Bert_peft_config)
Llama_peft_config = LoraConfig(
r=8,
lora_alpha=16,
lora_dropout=0.1,
target_modules=["q_proj", "v_proj"],
bias="none",
task_type=TaskType.CAUSAL_LM
)
self.Llama_model = get_peft_model(self.Llama_model, Llama_peft_config)
def save_ft_model(self, path):
if not os.path.exists(path):
os.makedirs(path)
Llama_ft_path = os.path.join(path,'Llama_ft')
Bert_ft_path = os.path.join(path,'Bert_ft')
projector_path = os.path.join(path,'projector.pt')
self.Llama_model.save_pretrained(Llama_ft_path, safe_serialization = True)
self.Bert_model.save_pretrained(Bert_ft_path, safe_serialization =True)
torch.save(self.projector.state_dict(), projector_path)
def set_train_only_projector(self):
for name, param in self.projector.named_parameters():
param.requires_grad = True
for name, param in self.Bert_model.named_parameters():
param.requires_grad = False
for name, param in self.Llama_model.named_parameters():
param.requires_grad = False
def set_train_only_Llama(self):
for name, param in self.projector.named_parameters():
param.requires_grad = False
for name, param in self.Bert_model.named_parameters():
param.requires_grad = False
for name, param in self.Llama_model.named_parameters():
if 'lora' in name:
param.requires_grad = True
def set_train_projectorAndBert(self):
for name, param in self.projector.named_parameters():
param.requires_grad = True
for name, param in self.Bert_model.named_parameters():
if 'lora' in name:
param.requires_grad = True
for name, param in self.Llama_model.named_parameters():
param.requires_grad = False
def set_finetuning_all(self):
for name, param in self.projector.named_parameters():
param.requires_grad = True
for name, param in self.Bert_model.named_parameters():
if 'lora' in name:
param.requires_grad = True
for name, param in self.Llama_model.named_parameters():
if 'lora' in name:
param.requires_grad = True
def train_helper(self, sequences_, labels):
'''
:param sequences: list of list: [seq, seq, ...,seq] , seq:[item, ..., item]
:param labels: list of labels, label is one of ['anomalous', 'normal']
:return: Llama_output[label_mask], target_tokens_ids[target_tokens_atts]
'''
sequences = [sequence[:self.max_seq_len] for sequence in sequences_]
batch_size = len(sequences)
data, seq_positions = merge_data(sequences)
seq_positions = seq_positions[1:]
inputs = self.Bert_tokenizer(data, return_tensors="pt", max_length=self.max_content_len, padding=True,
truncation=True).to(self.device)
outputs = self.Bert_model(**inputs).pooler_output # dim = 768
outputs = outputs.float()
outputs = self.projector(outputs)
outputs = outputs.half()
seq_embeddings = torch.tensor_split(outputs, seq_positions)
prefix = "The sequence is "
max_len = max(len(s) for s in labels) + len(prefix)
labels = np.char.add(np.char.add(prefix, labels.astype(f'U{max_len}')), ".")
answer_tokens = self.Llama_tokenizer(list(labels), padding=True, return_tensors="pt").to(self.device)
target_tokens_ids = torch.cat([answer_tokens['input_ids'][:, 1:],
torch.full((batch_size, 1), self.Llama_tokenizer.eos_token_id, device=self.device)],
dim=-1) # add eos token
target_tokens_atts = answer_tokens['attention_mask'].bool()
answer_tokens_ids = answer_tokens['input_ids'][:, 1:] # remove bos token
answer_tokens_atts = answer_tokens['attention_mask'].bool()[:, 1:]
if type(self.Llama_model) == peft.peft_model.PeftModelForCausalLM:
instruc_embeddings = self.Llama_model.model.model.embed_tokens(self.instruc_tokens['input_ids'])
answer_embeddings = self.Llama_model.model.model.embed_tokens(answer_tokens_ids)
else:
instruc_embeddings = self.Llama_model.model.embed_tokens(self.instruc_tokens['input_ids'])
answer_embeddings = self.Llama_model.model.embed_tokens(answer_tokens_ids)
ins1 = instruc_embeddings[0][self.instruc_tokens['attention_mask'][0].bool()]
ins2 = instruc_embeddings[1][self.instruc_tokens['attention_mask'][1].bool()][1:]
embeddings = []
target_lens = []
for seq_embedding, answer_embedding, answer_tokens_att in zip(seq_embeddings, answer_embeddings,
answer_tokens_atts):
full_prompt_embedding = torch.cat([ins1, seq_embedding, ins2, answer_embedding[answer_tokens_att]])
target_lens.append(answer_tokens_att.sum())
embeddings.append(full_prompt_embedding)
inputs_embeds, attention_mask = stack_and_pad_left(embeddings)
attention_mask = attention_mask.to(self.device)
label_mask = attention_mask.clone()
for i in range(label_mask.shape[0]):
label_mask[i, :-target_lens[i]-1] = 0
label_mask = label_mask.bool()
Llama_output = self.Llama_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask).logits
return Llama_output[label_mask], target_tokens_ids[target_tokens_atts]
def forward(self, sequences_):
'''
:param sequences: list of list: [seq, seq, ...,seq] , seq:[item, ..., item]
:return: Generated answer (token id).
'''
sequences = [sequence[:self.max_seq_len] for sequence in sequences_]
batch_size = len(sequences)
data, seq_positions = merge_data(sequences)
seq_positions = seq_positions[1:]
inputs = self.Bert_tokenizer(data, return_tensors="pt", max_length=self.max_content_len, padding=True,
truncation=True).to(self.device)
outputs = self.Bert_model(**inputs).pooler_output # dim = 768
outputs = outputs.float()
outputs = self.projector(outputs)
outputs = outputs.half()
seq_embeddings = torch.tensor_split(outputs, seq_positions)
prefix = "The sequence is"
answer_prefix_tokens = self.Llama_tokenizer(prefix, padding=True, return_tensors="pt")['input_ids'][0,1:].to(
self.device)
if type(self.Llama_model) == peft.peft_model.PeftModelForCausalLM:
instruc_embeddings = self.Llama_model.model.model.embed_tokens(self.instruc_tokens['input_ids'])
answer_prefix_tokens_embeddings = self.Llama_model.model.model.embed_tokens(answer_prefix_tokens)
else:
instruc_embeddings = self.Llama_model.model.embed_tokens(self.instruc_tokens['input_ids'])
answer_prefix_tokens_embeddings = self.Llama_model.model.embed_tokens(answer_prefix_tokens)
ins1 = instruc_embeddings[0][self.instruc_tokens['attention_mask'][0].bool()]
ins2 = instruc_embeddings[1][self.instruc_tokens['attention_mask'][1].bool()][1:]
promot_embeddings = []
for seq_embedding in seq_embeddings:
prompt_embedding = torch.cat([ins1, seq_embedding, ins2, answer_prefix_tokens_embeddings])
promot_embeddings.append(prompt_embedding)
inputs_embeds, attention_mask = stack_and_pad_left(promot_embeddings)
attention_mask = attention_mask.to(self.device)
pad_token_id = self.Llama_tokenizer.pad_token_id
eos_token_id = self.Llama_tokenizer.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id_tensor = torch.tensor(eos_token_id).to(self.device) if eos_token_id is not None else None
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=self.device)
this_peer_finished = False
answer = []
while not this_peer_finished:
Llama_output = self.Llama_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask).logits
next_token_logits = Llama_output[:, -1, :]
next_tokens = torch.argmax(next_token_logits, dim=-1)
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# print(next_tokens)
answer.append(next_tokens)
if type(self.Llama_model) == peft.peft_model.PeftModelForCausalLM:
next_tokens_embeddings = self.Llama_model.model.model.embed_tokens(next_tokens)
else:
next_tokens_embeddings = self.Llama_model.model.embed_tokens(next_tokens)
inputs_embeds = torch.cat([inputs_embeds, next_tokens_embeddings[:,None,:]], dim=1)
attention_mask = torch.cat([attention_mask, unfinished_sequences[:,None]], dim=1)
if eos_token_id_tensor is not None:
unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
)
# stop when each sentence is finished
if unfinished_sequences.max() == 0:
this_peer_finished = True
# stop if we exceed the maximum answer length
if 5 < len(answer):
this_peer_finished = True
return torch.stack(answer,dim=1)