forked from zhoubolei/CAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.m
65 lines (47 loc) · 2.09 KB
/
demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
% Sample code to generate class activation map from 10 crops of activations
% Bolei Zhou, March 15, 2016
% for the online prediction, make sure you have complied matcaffe
clear
addpath('/opt/caffe/matlab');
imgID = 2; % 1 or 2
img = imread(['img' num2str(imgID) '.jpg']);
img = imresize(img, [256 256]);
online = 0; % whether extract features online or load pre-extracted features
load('categories1000.mat');
if online == 1
% load the CAM model and extract features
net_weights = ['models/imagenet_googlenetCAM_train_iter_120000.caffemodel'];
net_model = ['models/deploy_googlenetCAM_imagenet.prototxt'];
net = caffe.Net(net_model, net_weights, 'test');
weights_LR = net.params('CAM_fc',1).get_data();% get the softmax layer of the network
scores = net.forward({prepare_image(img)});% extract conv features online
activation_lastconv = net.blobs('CAM_conv').get_data();
scores = scores{1};
else
% use the extracted features and softmax parameters cached before hand
load('data_net.mat'); % it contains the softmax weights and the category names of the network
load(['data_img' num2str(imgID) '.mat']); %it contains the pre-extracted conv features
end
%% Class Activation Mapping
topNum = 5; % generate heatmap for top X prediction results
scoresMean = mean(scores,2);
[value_category, IDX_category] = sort(scoresMean,'descend');
[curCAMmapAll] = returnCAMmap(activation_lastconv, weights_LR(:,IDX_category(1:topNum)));
curResult = im2double(img);
curPrediction = '';
for j=1:topNum
curCAMmap_crops = squeeze(curCAMmapAll(:,:,j,:));
curCAMmapLarge_crops = imresize(curCAMmap_crops,[224 224]);
curCAMmap_image = mergeTenCrop(curCAMmapLarge_crops);
curHeatMap = map2jpg(curCAMmap_image, [], 'jet');
curHeatMap = im2double(img)*0.2+curHeatMap*0.7;
curResult = [curResult ones(size(curHeatMap,1),8,3) curHeatMap];
curPrediction = [curPrediction ' --top' num2str(j) ':' categories{IDX_category(j)}];
end
disp(curPrediction);
imwrite(curResult, 'result.jpg');
figure,imshow(curResult);
title(curPrediction)
if online==1
caffe.reset_all();
end