-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvtgllm.py
1080 lines (905 loc) · 49.7 KB
/
vtgllm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import logging
import math
import random
import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn
import torch.nn.functional as F
from vtgllm.common.registry import registry
from vtgllm.models.blip2 import Blip2Base, disabled_train
from vtgllm.models.modeling_llama import LlamaForCausalLM
# from vtgllm.models.Qformer import BertEncoder
from transformers import LlamaTokenizer, BertConfig
# from transformers.models.bert.modeling_bert import BertEncoder
import einops
import copy
from vtgllm.models.Qformer import BertConfig, BertLMHeadModel
from vtgllm.common.losses import TimeLoss
from vtgllm.common.utils import get_entropy
# from entropy_estimators import continuous
# from flamingo_pytorch import PerceiverResampler
class NoneSampler(nn.Module):
def __init__(self):
super(NoneSampler, self).__init__()
def forward(self, x):
return x, 0.0
class CrossAttentionSampler(nn.Module):
def __init__(self, num_query, feature_size, nhead=8):
super(CrossAttentionSampler, self).__init__()
self.attention = nn.MultiheadAttention(feature_size, nhead, batch_first=True)
self.query = nn.Parameter(torch.randn(1, num_query, feature_size))
def forward(self, x):
attn_output, _ = self.attention(self.query, x, x)
return attn_output, 0.0
class SlotSampler(nn.Module):
def __init__(self, num_slots, feature_size):
super(SlotSampler, self).__init__()
self.slots = nn.Parameter(torch.randn(feature_size, num_slots))
self.num_slots = num_slots
def forward(self, x):
logits = torch.matmul(x, self.slots)
logits = torch.softmax(logits, dim=1)
res = torch.matmul(x.permute(0,2,1), logits).permute(0, 2, 1)
# print(res, res.shape)
return res, 0.0
class CodebookSampler(nn.Module):
def __init__(self, num_codes, feature_size):
super(CodebookSampler, self).__init__()
self.codebook = nn.Parameter(torch.randn(num_codes, feature_size))
def forward(self, x):
batch_size, token_num, dim = x.shape
codebook_outputs = []
codebook_losses = []
for i in range(batch_size):
# Compute the distances between each code vector and each input token
distances = (self.codebook.unsqueeze(1) - x[i].unsqueeze(0)).pow(2).sum(-1)
# Find the indices of the closest input tokens
_, indices = distances.min(1)
# Replace each code vector with its closest input token
codebook_output = x[i, indices]
# Use the straight-through estimator for the backward pass
codebook_output_ste = self.codebook + (codebook_output - self.codebook).detach()
codebook_loss = F.mse_loss(codebook_output, self.codebook.detach()) + F.mse_loss(self.codebook, codebook_output.detach())
codebook_losses.append(codebook_loss)
codebook_outputs.append(codebook_output_ste.unsqueeze(0))
codebook_output = torch.cat(codebook_outputs, dim=0)
codebook_loss = sum(codebook_losses) / len(codebook_losses)
return codebook_output, codebook_loss
class DiverseSampler(nn.Module):
def __init__(self, k):
super(DiverseSampler, self).__init__()
self.k = k
def forward(self, x):
batch_size, token_num, dim = x.shape
diverse_tokens = []
for i in range(batch_size):
diverse_indices = self.k_means_plus_plus(x[i], self.k)
# print('diverse_indicies', diverse_indices)
diverse_tokens.append(x[i, diverse_indices].unsqueeze(0))
return torch.cat(diverse_tokens, dim=0), 0.0
@staticmethod
def k_means_plus_plus(x, k):
indices = torch.arange(len(x))
first_index = torch.randint(len(x), (1,)).item()
selected_indices = [first_index]
distances = torch.norm(x - x[first_index], dim=-1)
for _ in range(k - 1):
next_index = torch.multinomial(distances, 1).item()
selected_indices.append(next_index)
new_distances = torch.norm(x - x[next_index], dim=-1)
distances = torch.min(distances, new_distances)
return indices[selected_indices]
class EntropySampler(nn.Module):
def __init__(self, k):
super(EntropySampler, self).__init__()
self.k = k
'''
sample tokens that have the maximum entropy
'''
def forward(self, x):
batch_size, token_num, dim = x.shape
sampled_tokens = []
for i in range(batch_size):
entropy = torch.tensor(get_entropy(x[i].cpu().detach().numpy(), k=5))
sampled_indicies = torch.multinomial(entropy, self.k)
sampled_tokens.append(x[i, sampled_indicies].unsqueeze(0))
sampled_tokens = torch.cat(sampled_tokens, dim=0)
# print(sampled_tokens)
return sampled_tokens, 0.0
@registry.register_model("vtgllm")
class VTGLLM(Blip2Base):
"""
BLIP2 GPT-LLAMA model.
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain_llama_v2": "configs/models/vtgllm.yaml",
}
@classmethod
def init_video_Qformer(cls, num_query_token, vision_width, num_hidden_layers=2):
encoder_config = BertConfig.from_pretrained("model/bert-base-uncased")
encoder_config.num_hidden_layers = num_hidden_layers
encoder_config.encoder_width = vision_width
# insert cross-attention layer every other block
encoder_config.add_cross_attention = True
encoder_config.cross_attention_freq = 1
encoder_config.query_length = num_query_token
Qformer = BertLMHeadModel(config=encoder_config)
query_tokens = nn.Parameter(
torch.zeros(1, num_query_token, encoder_config.hidden_size)
)
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
return Qformer, query_tokens
def __init__(
self,
vit_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth",
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
freeze_qformer=True,
num_query_token=32,
llama_model="",
prompt_path="",
prompt_template="",
max_txt_len=32,
end_sym='\n',
low_resource=False, # use 8 bit and put vit in cpu
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
frozen_llama_proj=True,
use_video_qformer=True,
frozen_video_Qformer=True,
llama_proj_model='',
fusion_header_type="seqTransf",
max_frame_pos=32,
max_time_pos=1024,
fusion_head_layers=2,
num_video_query_token=32,
lora=False,
qformer_text_input=False,
lora_inference_mode=True,
window_size=0,
stride=0,
real_time_stamp=False,
real_time_stamp_random_init=False,
special_time_token=False,
time_loss=None,
sampler_type='none',
sample_num=256
):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.low_resource = low_resource
self.real_time_stamp = real_time_stamp
self.special_time_token = special_time_token
self.time_loss=time_loss
self.use_video_qformer=use_video_qformer
self.sampler_type = sampler_type
assert not (self.use_video_qformer and self.sampler_type != 'none'), "can not use sampler and video qformer at the same time!"
print('use_video_qformer', use_video_qformer)
print('num query token', num_query_token)
print('Real time stamp: ', real_time_stamp, special_time_token)
print('Loading VIT')
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision, max_frame_pos
)
if freeze_vit:
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
for name, param in self.ln_vision.named_parameters():
param.requires_grad = False
self.ln_vision = self.ln_vision.eval()
self.ln_vision.train = disabled_train
logging.info("freeze vision encoder")
print('Loading VIT Done')
print('Loading Q-Former')
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token, self.visual_encoder.num_features
)
if not qformer_text_input:
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.Qformer.cls = None
else:
print("use text input for Qformer")
self.Qformer.resize_token_embeddings(len(self.tokenizer))
# self.Qformer.cls = None
self.qformer_text_input = qformer_text_input
self.load_from_pretrained(url_or_filename=q_former_model)
if freeze_qformer:
for name, param in self.Qformer.named_parameters():
param.requires_grad = False
self.Qformer = self.Qformer.eval()
self.Qformer.train = disabled_train
self.query_tokens.requires_grad = False
logging.info("freeze Qformer")
logging.info('Loading Q-Former Done')
logging.info('Loading LLAMA Tokenizer')
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False)
if self.llama_tokenizer.pad_token is None:
self.llama_tokenizer.pad_token = self.llama_tokenizer.unk_token
DEFAULT_IMAGE_PATCH_TOKEN = '<ImageHere>'
self.llama_tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
# if self.special_time_token:
# self.llama_tokenizer.add_tokens(SPECIAL_TIME_TOKENS)
# need to update llama embed dimension
self.IMAGE_PATCH_TOKEN_ID = self.llama_tokenizer.get_vocab()[DEFAULT_IMAGE_PATCH_TOKEN]
logging.info('Loading LLAMA Model')
if self.low_resource:
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_model,
torch_dtype=torch.bfloat16,
load_in_8bit=True,
device_map={'': device_8bit}
)
else:
if max_txt_len > 2048:
logging.info(f"interpolate llama model's rope from 2048 to {max_txt_len}")
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_model,
torch_dtype=torch.bfloat16,
max_position_embeddings=max_txt_len,
rope_scaling={
"type": "linear",
"factor": 2.0
}
)
else:
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_model,
torch_dtype=torch.bfloat16,
)
if use_grad_checkpoint:
logging.info("use gradient checkpointing for LLAMA")
self.llama_model.gradient_checkpointing_enable()
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
logging.info('Loading LLAMA Done')
self.lora = lora
if self.lora:
logging.info('Using LORA')
from peft import LoraConfig, get_peft_model, TaskType
config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=lora_inference_mode,
r=32,
lora_alpha=32,
lora_dropout=0.1,
target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj']
)
self.llama_model = get_peft_model(self.llama_model, config)
if not lora_inference_mode:
for name, param in self.llama_model.named_parameters():
if 'lora' in name:
param.requires_grad = False
param = param.float()
param.requires_grad = True
self.llama_model.print_trainable_parameters()
logging.info('Loading LLAMA proj')
self.llama_proj = nn.Linear(
self.Qformer.config.hidden_size, self.llama_model.config.hidden_size
)
if llama_proj_model:
print("load llama proj weight: {}".format(llama_proj_model))
llama_proj_weight = torch.load(llama_proj_model, map_location="cpu")
msg = self.load_state_dict(llama_proj_weight['model'], strict=False)
if frozen_llama_proj:
# todo frozen llama_proj
for name, param in self.llama_proj.named_parameters():
param.requires_grad = False
logging.info('LLAMA proj is frozen')
else:
for name, param in self.llama_proj.named_parameters():
param.requires_grad = True
logging.info('LLAMA proj is not frozen')
logging.info('Loading llama_proj Done')
self.max_txt_len = max_txt_len
self.end_sym = end_sym
if prompt_path:
with open(prompt_path, 'r') as f:
raw_prompts = f.read().splitlines()
filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<ImageHere>" in raw_prompt]
self.prompt_list = [prompt_template.format(p) for p in filted_prompts]
print('Load {} training prompts'.format(len(self.prompt_list)))
print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
else:
self.prompt_list = []
self.max_time_pos = max_time_pos
print('self max time pos', max_time_pos)
self.video_frame_position_embedding = nn.Embedding(max_frame_pos, self.Qformer.config.hidden_size)
self.video_frame_position_embedding.weight.data = torch.zeros_like(self.video_frame_position_embedding.weight.data).float()
if self.real_time_stamp:
# v_1
# self.video_frame_position_embedding = nn.Embedding(max_time_pos, self.Qformer.config.hidden_size)
# v_2
# self.video_frame_position_embedding = nn.Embedding(max_frame_pos, self.Qformer.config.hidden_size)
# self.video_time_position_embedding = nn.Embedding(max_time_pos, self.Qformer.config.hidden_size)
if not real_time_stamp_random_init:
self.video_time_position_embedding = nn.Parameter(torch.zeros((max_time_pos, self.Qformer.config.hidden_size), requires_grad=True).float())
else:
print('Random init real time!')
self.video_time_position_embedding = nn.Parameter(torch.randn((max_time_pos, self.Qformer.config.hidden_size), requires_grad=True).float())
self.num_video_query_token = num_video_query_token
self.window_size = window_size
self.stride = stride
if self.use_video_qformer:
self.video_Qformer, self.video_query_tokens = self.init_video_Qformer(num_query_token=num_video_query_token, \
vision_width=self.Qformer.config.hidden_size,
num_hidden_layers=2)
self.video_Qformer.cls = None
self.video_Qformer.bert.embeddings.word_embeddings = None
self.video_Qformer.bert.embeddings.position_embeddings = None
for layer in self.video_Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
if frozen_video_Qformer:
# todo frozen llama_proj
for name, param in self.video_Qformer.named_parameters():
param.requires_grad = False
for name, param in self.video_frame_position_embedding.named_parameters():
param.requires_grad = False
self.video_query_tokens.requires_grad = False
logging.info('video_Qformer is frozen')
else:
for name, param in self.video_Qformer.named_parameters():
param.requires_grad = True
for name, param in self.video_frame_position_embedding.named_parameters():
param.requires_grad = True
self.video_query_tokens.requires_grad = True
logging.info('video_Qformer is not frozen')
else:
self.video_Qformer, self.video_query_tokens = None, None
if self.sampler_type == 'none':
self.sampler = NoneSampler()
elif self.sampler_type == 'diverse':
self.sampler = DiverseSampler(sample_num)
elif self.sampler_type == 'codebook':
self.sampler = CodebookSampler(sample_num, self.Qformer.config.hidden_size)
for name, param in self.sampler.named_parameters():
param.requires_grad = True
elif self.sampler_type == 'entropy':
self.sampler = EntropySampler(sample_num)
elif self.sampler_type == 'slot':
self.sampler = SlotSampler(sample_num, self.Qformer.config.hidden_size)
if not frozen_video_Qformer:
for name, param in self.sampler.named_parameters():
param.requires_grad = True
else:
for name, param in self.sampler.named_parameters():
param.requires_grad = False
elif self.sampler_type == 'cross':
self.sampler = CrossAttentionSampler(sample_num, self.Qformer.config.hidden_size)
if not frozen_video_Qformer:
for name, param in self.sampler.named_parameters():
param.requires_grad = True
else:
for name, param in self.sampler.named_parameters():
param.requires_grad = False
else:
raise ValueError('Sampler Type not Supported')
def vit_to_cpu(self):
self.ln_vision.to("cpu")
self.ln_vision.float()
self.visual_encoder.to("cpu")
self.visual_encoder.float()
def encode_videoQformer_visual(self, image, timestamp=None, absolute_timestamp=None):
device = image.device
# print(device)
# self.visual_encoder.to(device)
# self.ln_vision.to(device)
# input shape b,c,t,h,w
# print('timestamp begin', absolute_timestamp, timestamp["input_ids"])
batch_size, _, time_length, _, _ = image.size()
# x = einops.rearrange(x, 'b c t h w -> (b t) c h w')
with self.maybe_autocast():
# embed image features with blip2, out: (b t) q h
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
# print(image_embeds.shape)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
if self.qformer_text_input:
# timestamps_input_ids = einops.rearrange(timestamp["input_ids"], 'b t d -> (b t) d')
# timestamps_attention_mask = einops.rearrange(timestamp["attention_mask"], 'b t d -> (b t) d')
timestamps_input_ids = timestamp["input_ids"].to(device)
timestamps_attention_mask = timestamp["attention_mask"].to(device)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image.device)
Qformer_atts = torch.cat([query_atts, timestamps_attention_mask], dim=1)
query_output = self.Qformer.bert(
timestamps_input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
else:
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
# print(query_output.last_hidden_state.shape)
# add frame_pos embedding
if not self.real_time_stamp:
position_ids = torch.arange(time_length, dtype=torch.long, device=query_tokens.device)
position_ids = position_ids.unsqueeze(0).expand(batch_size, -1)
frame_position_embeddings = self.video_frame_position_embedding(position_ids)
frame_position_embeddings = frame_position_embeddings.unsqueeze(-2)
else:
# v_1 -- use absolute time as position embedding
# position_ids = absolute_timestamp
# v_2 -- add additional time embedding, and initialize as zero
position_ids = torch.arange(time_length, dtype=torch.long, device=query_tokens.device)
position_ids = position_ids.unsqueeze(0).expand(batch_size, -1)
frame_position_embeddings = self.video_frame_position_embedding(position_ids)
time_position_embeddings = torch.matmul(F.one_hot(absolute_timestamp, self.max_time_pos).float(), self.video_time_position_embedding)
frame_position_embeddings = frame_position_embeddings.unsqueeze(-2)
time_position_embeddings = time_position_embeddings.unsqueeze(-2)
frame_position_embeddings = frame_position_embeddings + time_position_embeddings
q_hidden_state = query_output.last_hidden_state
# print(frame_position_embeddings.shape, q_hidden_state.shape)
frame_hidden_state = einops.rearrange(q_hidden_state, '(b t) q h -> b t q h', b=batch_size, t=time_length)
frame_hidden_state = frame_position_embeddings + frame_hidden_state
# print(frame_hidden_state.shape)
# frame attention
if self.use_video_qformer:
if self.window_size <= 0:
# use frames
frame_hidden_state = einops.rearrange(frame_hidden_state, 'b t q h -> b (t q) h', b=batch_size,
t=time_length)
frame_atts = torch.ones(frame_hidden_state.size()[:-1], dtype=torch.long).to(device)
video_query_tokens = self.video_query_tokens.expand(frame_hidden_state.shape[0], -1,
-1) # expand on batch dim
video_query_output = self.video_Qformer.bert(
query_embeds=video_query_tokens,
encoder_hidden_states=frame_hidden_state,
encoder_attention_mask=frame_atts,
return_dict=True,
)
video_hidden = video_query_output.last_hidden_state
inputs_llama = self.llama_proj(video_hidden)
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image_embeds.device)
else:
# use clips
inputs_llama_list, atts_llama_list = [], []
for i in range(0, time_length, self.stride):
clip_hidden_state = frame_hidden_state[:, i:i + self.window_size, ...]
clip_hidden_state = einops.rearrange(clip_hidden_state, 'b t q h -> b (t q) h', b=batch_size)
clip_atts = torch.ones(clip_hidden_state.size()[:-1], dtype=torch.long).to(device)
video_query_tokens = self.video_query_tokens.expand(clip_hidden_state.shape[0], -1,
-1) # expand on batch dim
video_query_output = self.video_Qformer.bert(
query_embeds=video_query_tokens,
encoder_hidden_states=clip_hidden_state,
encoder_attention_mask=clip_atts,
return_dict=True,
)
video_hidden = video_query_output.last_hidden_state # [bsz, t, dim]
inputs_llama = self.llama_proj(video_hidden)
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image_embeds.device)
inputs_llama_list.append(inputs_llama)
atts_llama_list.append(atts_llama)
inputs_llama = torch.cat(inputs_llama_list, dim=1) # [bsz, t, dim]
atts_llama = torch.cat(atts_llama_list, dim=1) # [bsz, t]
# print(inputs_llama.shape, atts_llama.shape)
sample_loss = 0.0
else:
video_hidden = frame_hidden_state.view(batch_size, -1, frame_hidden_state.shape[-1])
# print('before sampler', video_hidden.shape)
video_hidden, sample_loss = self.sampler(video_hidden)
# print('after sampler', video_hidden.shape)
inputs_llama = self.llama_proj(video_hidden)
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image_embeds.device)
return inputs_llama, atts_llama, sample_loss
def prompt_wrap(self, img_embeds, atts_img, prompt):
if prompt:
batch_size = img_embeds.shape[0]
# print(prompt)
p_before, p_after = prompt.split('<ImageHere>')
p_before_tokens = self.llama_tokenizer(
p_before, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_after_tokens = self.llama_tokenizer(
p_after, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
if self.lora: # peft
p_before_embeds = self.llama_model.get_base_model().model.embed_tokens(
p_before_tokens.input_ids).expand(batch_size, -1, -1)
p_after_embeds = self.llama_model.get_base_model().model.embed_tokens(p_after_tokens.input_ids).expand(
batch_size, -1, -1)
else:
p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1,
-1)
p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1,
-1)
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds, p_after_embeds], dim=1)
wrapped_atts_img = atts_img[:, :1].expand(-1, wrapped_img_embeds.shape[1])
return wrapped_img_embeds, wrapped_atts_img
else:
return img_embeds, atts_img
def forward(self, samples):
if 'conv_type' in samples.keys() and samples['conv_type'] == 'multi':
im_patch_token_id = self.IMAGE_PATCH_TOKEN_ID
image = samples["images"]
input_ids = samples['input_ids']
if isinstance(image, list): # nb of frames of some videos is less than ${num_frm}
assert isinstance(samples["timestamps"], list) and isinstance(samples["absolute_timestamps"], list)
img_embeds_list, atts_img_list, num_patch_tokens_list, sample_loss_list = [], [], [], []
for img, timestamp, absolute_timestamp in zip(image, samples["timestamps"], samples["absolute_timestamps"]):
img = img.unsqueeze(0)
if len(img.size()) == 4:
time = 1
img = einops.repeat(img, 'b c h w -> b c t h w', t=time)
# num_patch_tokens = self.num_video_query_token * math.ceil(
# img.shape[2] / self.stride) if self.stride > 0 else self.num_video_query_token
img_embeds, atts_img, sample_loss = self.encode_videoQformer_visual(img, timestamp=timestamp, absolute_timestamp=absolute_timestamp)
num_patch_tokens = img_embeds.shape[1]
img_embeds_list.append(img_embeds)
atts_img_list.append(atts_img)
num_patch_tokens_list.append(num_patch_tokens)
sample_loss_list.append(sample_loss)
img_embeds = img_embeds_list
atts_img = atts_img_list
sample_loss = sum(sample_loss_list) / len(sample_loss_list)
else: # nb of frames of all videos is ${num_frm}
if len(image.size()) == 4:
time = 1
image = einops.repeat(image, 'b c h w -> b c t h w', t=time)
# num_patch_tokens = self.num_video_query_token * math.ceil(
# image.shape[2] / self.stride) if self.stride > 0 else self.num_video_query_token
# print(image, samples)
img_embeds, atts_img, sample_loss = self.encode_videoQformer_visual(image, timestamp=samples["timestamps"], absolute_timestamp=samples["absolute_timestamps"])
num_patch_tokens = img_embeds.shape[1]
temp_input_ids = copy.deepcopy(input_ids)
temp_input_ids[temp_input_ids == im_patch_token_id] = 0
if self.lora:
temp_input_embedding = self.llama_model.get_base_model().model.embed_tokens(temp_input_ids)
else:
temp_input_embedding = self.llama_model.model.embed_tokens(temp_input_ids)
new_input_embeds = []
cur_image_idx = 0
for cur_input_ids, cur_input_embeds in zip(input_ids, temp_input_embedding):
cur_image_features = img_embeds[cur_image_idx] # [num_video_query_token, dim]
if isinstance(image, list):
cur_image_features = cur_image_features.squeeze(0)
num_patch_tokens = num_patch_tokens_list[cur_image_idx]
# print(num_patch_tokens, (cur_input_ids == im_patch_token_id).sum())
if (cur_input_ids == im_patch_token_id).sum() != num_patch_tokens:
raise ValueError(
"The number of image patch tokens should be the same as the number of image patches.")
masked_indices = torch.where(cur_input_ids == im_patch_token_id)[0]
mask_index_start = masked_indices[0]
if (masked_indices != torch.arange(mask_index_start, mask_index_start + num_patch_tokens,
device=masked_indices.device, dtype=masked_indices.dtype)).any():
raise ValueError("The image patch tokens should be consecutive.")
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features,
cur_input_embeds[mask_index_start + num_patch_tokens:]), dim=0)
new_input_embeds.append(cur_new_input_embeds)
cur_image_idx += 1
inputs_embeds = torch.stack(new_input_embeds, dim=0)
targets = samples['labels']
attention_mask = samples['attention_mask']
# print(inputs_embeds.shape, targets.shape, attention_mask)
with self.maybe_autocast():
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
# print(loss, sample_loss)
return {"loss": loss + sample_loss}
else:
image = samples["image"]
if len(image.size()) != 5:
time = 1
image = einops.repeat(image, 'b c h w -> b c t h w', t=time)
img_embeds, atts_img, sample_loss = self.encode_videoQformer_visual(image)
if self.prompt_list:
prompt = random.choice(self.prompt_list)
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, prompt)
self.llama_tokenizer.padding_side = "right"
text = [t + self.end_sym for t in samples["text_input"]]
to_regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False
).to(image.device)
targets = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
)
empty_targets = (
torch.ones([atts_img.shape[0], atts_img.shape[1] + 1],
dtype=torch.long).to(image.device).fill_(-100) # plus one for bos
)
targets = torch.cat([empty_targets, targets], dim=1)
batch_size = img_embeds.shape[0]
bos = torch.ones([batch_size, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id
if self.lora:
bos_embeds = self.llama_model.get_base_model().model.embed_tokens(bos)
to_regress_embeds = self.llama_model.get_base_model().model.embed_tokens(to_regress_tokens.input_ids)
else:
bos_embeds = self.llama_model.model.embed_tokens(bos)
to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids)
atts_bos = atts_img[:, :1]
inputs_embeds = torch.cat([bos_embeds, img_embeds, to_regress_embeds], dim=1)
attention_mask = torch.cat([atts_bos, atts_img, to_regress_tokens.attention_mask], dim=1)
with self.maybe_autocast():
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss + sample_loss}
@classmethod
def from_config(cls, cfg):
vit_model = cfg.get("vit_model",
"https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth")
q_former_model = cfg.get("q_former_model",
"https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth")
img_size = cfg.get("image_size")
num_query_token = cfg.get("num_query_token")
llama_model = cfg.get("llama_model")
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_vit = cfg.get("freeze_vit", True)
freeze_qformer = cfg.get("freeze_qformer", True)
low_resource = cfg.get("low_resource", False)
device_8bit = cfg.get("device_8bit", 0)
lora = cfg.get("lora", False)
lora_inference_mode = cfg.get("lora_inference_mode", False)
prompt_path = cfg.get("prompt_path", "")
prompt_template = cfg.get("prompt_template", "")
max_txt_len = cfg.get("max_txt_len", 32)
end_sym = cfg.get("end_sym", '\n')
frozen_llama_proj = cfg.get("frozen_llama_proj", True)
frozen_video_Qformer = cfg.get("frozen_video_Qformer", True)
llama_proj_model = cfg.get("llama_proj_model", '')
fusion_header_type = cfg.get("fusion_header_type", 'seqTransf')
max_frame_pos = cfg.get("max_frame_pos", 32)
max_time_pos = cfg.get("max_time_pos", 1024)
fusion_head_layers = cfg.get("fusion_head_layers", 2)
num_video_query_token = cfg.get("num_video_query_token", 32)
qformer_text_input = cfg.get("qformer_text_input", False)
window_size = cfg.get("window_size", 0)
stride = cfg.get("stride", 0)
real_time_stamp = cfg.get('real_time_stamp', False)
real_time_stamp_random_init = cfg.get('real_time_stamp_random_init', False)
special_time_token = cfg.get('special_time_token', False)
added_time_token = cfg.get('added_time_token', False)
time_loss = cfg.get('time_loss', False)
use_video_qformer = cfg.get('use_video_qformer', True)
sampler_type = cfg.get('sampler_type', 'none')
sample_num = cfg.get('sample_num', 256)
time_embedding_interpolation=cfg.get('time_embedding_interpolation', False)
time_token_initialization=cfg.get('time_token_initialization', True)
print('max time pos', max_time_pos)
model = cls(
vit_model=vit_model,
q_former_model=q_former_model,
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
freeze_qformer=freeze_qformer,
num_query_token=num_query_token,
llama_model=llama_model,
prompt_path=prompt_path,
prompt_template=prompt_template,
max_txt_len=max_txt_len,
end_sym=end_sym,
low_resource=low_resource,
device_8bit=device_8bit,
fusion_header_type=fusion_header_type,
max_frame_pos=max_frame_pos,
max_time_pos=max_time_pos,
fusion_head_layers=fusion_head_layers,
use_video_qformer=use_video_qformer,
frozen_llama_proj=frozen_llama_proj,
frozen_video_Qformer=frozen_video_Qformer,
num_video_query_token=num_video_query_token,
llama_proj_model=llama_proj_model,
lora=lora,
qformer_text_input=qformer_text_input,
lora_inference_mode=lora_inference_mode,
window_size=window_size,
stride=stride,
real_time_stamp=real_time_stamp,
real_time_stamp_random_init=real_time_stamp_random_init,
special_time_token=special_time_token,
time_loss=None,
sampler_type=sampler_type,
sample_num=sample_num
)
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
if special_time_token and added_time_token:
TIME_STR = {
0: 'ZERO',
1: 'ONE',
2: 'TWO',
3: 'THREE',
4: 'FOUR',
5: 'FIVE',
6: 'SIX',
7: 'SEVEN',
8: 'EIGHT',
9: 'NINE'
}
SPECIAL_TIME_TOKENS = ['<TIME_{}>'.format(TIME_STR[i]) for i in range(10)]
SPECIAL_TIME_TOKENS.append('<TIME_DOT>')
model.tokenizer.add_tokens(SPECIAL_TIME_TOKENS)
model.llama_tokenizer.add_tokens(SPECIAL_TIME_TOKENS)
if qformer_text_input:
model.Qformer.resize_token_embeddings(len(model.tokenizer))
model.llama_model.resize_token_embeddings(len(model.llama_tokenizer))
# if lora:
# model.llama_model.base_model.model.model.embed_tokens.weight.requires_grad = False
# model.llama_model.base_model.model.lm_head.weight.requires_grad = False
# else:
# model.llama_model.model.embed_tokens.weight.requires_grad = False
# model.llama_model.lm_head.weight.requires_grad = False
if lora_inference_mode:
if lora:
model.llama_model.base_model.model.model.embed_tokens.weight.requires_grad = False
model.llama_model.base_model.model.lm_head.weight.requires_grad = False
else:
model.llama_model.model.embed_tokens.weight.requires_grad = False
model.llama_model.lm_head.weight.requires_grad = False
else:
if lora:
model.llama_model.base_model.model.model.embed_tokens = model.llama_model.base_model.model.model.embed_tokens.float()
model.llama_model.base_model.model.lm_head = model.llama_model.base_model.model.lm_head.float()
model.llama_model.base_model.model.model.embed_tokens.weight.requires_grad=True
model.llama_model.base_model.model.lm_head.weight.requires_grad=True
else:
model.llama_model.model.embed_tokens = model.llama_model.model.embed_tokens.float()
model.llama_model.lm_head = model.llama_model.lm_head.float()
model.llama_model.model.embed_tokens.weight.requires_grad=True
model.llama_model.lm_head.weight.requires_grad=True
if ckpt_path:
print("Load first Checkpoint: {}".format(ckpt_path))
ori_ckpt = torch.load(ckpt_path, map_location="cpu")
# print(ori_ckpt.keys())
ckpt = {'model': {}}
if 'model' not in ori_ckpt:
for key in ori_ckpt.keys():
# if key.startswith('llama_model.model.layers') or key.startswith('llama_model.model.layers')
ckpt['model'][key.replace('vision_encoder', 'visual_encoder').replace('qformer', 'Qformer').replace('vision_layernorm', 'ln_vision')] = ori_ckpt[key]
else:
for key in ori_ckpt['model'].keys():
ckpt['model'][key.replace('vision_encoder', 'visual_encoder').replace('qformer', 'Qformer').replace('vision_layernorm', 'ln_vision')] = ori_ckpt['model'][key]
if lora and not lora_inference_mode:
for key in ckpt['model'].keys():
if 'lora' in key:
ckpt['model'][key] = ckpt['model'][key].float()
# print(key, ckpt['model'][key])
if special_time_token and added_time_token and lora:
if 'llama_model.model.embed_tokens.weight' in ckpt['model']:
ckpt['model']['llama_model.base_model.model.model.embed_tokens.weight'] = ckpt['model']['llama_model.model.embed_tokens.weight']
if 'llama_model.lm_head.weight' in ckpt['model']:
ckpt['model']['llama_model.base_model.model.lm_head.weight'] = ckpt['model']['llama_model.lm_head.weight']
if 'video_frame_position_embedding.weight' in ckpt['model']:
old_frame_pos_embed_size = ckpt['model']['video_frame_position_embedding.weight'].size()
new_frame_pos_embed_size = model.video_frame_position_embedding.weight.size()
if old_frame_pos_embed_size != new_frame_pos_embed_size:
from vtgllm.processors.video_processor import interpolate_frame_pos_embed
print(
f'video_frame_position_embedding size is not the same, interpolate from {old_frame_pos_embed_size} to {new_frame_pos_embed_size}')
ckpt['model']['video_frame_position_embedding.weight'] = interpolate_frame_pos_embed(
ckpt['model']['video_frame_position_embedding.weight'], new_n_frm=new_frame_pos_embed_size[0])
if 'video_time_position_embedding' in ckpt['model'] and time_embedding_interpolation:
print('Start test time interpolation')
new_weights = torch.zeros_like(ckpt['model']['video_time_position_embedding'])
all_zero_times = (ckpt['model']['video_time_position_embedding'] == 0).all(dim=1).int()
print(f'not trained timestamps: {all_zero_times.nonzero().flatten()}')
bounds = []
left_margin = 0
stack = []
for i in range(len(all_zero_times)):
if all_zero_times[i] == 1:
stack.append([i, left_margin])
else:
while len(stack):
pre = stack.pop()
pre.append(i)
bounds.append(pre)
left_margin = i
while len(stack):
pre = stack.pop()
pre.append(-1)
bounds.append(pre)
for bound in bounds:
idx, left, right = bound[0], bound[1], bound[2]
left_weights = ckpt['model']['video_time_position_embedding'][left]
right_weights = ckpt['model']['video_time_position_embedding'][right]
idx_weights = left_weights * (idx - left) / (right - left) + right_weights * (right - idx) / (right - left)
ckpt['model']['video_time_position_embedding'][idx] = idx_weights
print(ckpt['model']['video_time_position_embedding'])
msg = model.load_state_dict(ckpt['model'], strict=False)
for key in ckpt['model'].keys():
if key in msg.missing_keys:
print('missing', key)
for key in ckpt['model'].keys():
if key in msg.unexpected_keys:
print('extra', key)