-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_minimax_simple.py
454 lines (388 loc) · 15.1 KB
/
test_minimax_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
## test_minimax_simple.py
## Compares different minimax optimization methods for representative 2D surfaces.
## Jihun Hamm, 2017
import os
import numpy as np
from cvxopt import matrix, solvers
from numpy.linalg import inv
from numpy.linalg import solve
from mpl_toolkits.mplot3d import Axes3D
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
import matplotlib.backends.backend_pdf
from matplotlib import colors as mcolors
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from minimax_examples import *
###################################################################################################
def GD(maxiter,u0,v0,eta,fn,args,proj):
## gd
du = u0.size
dv = v0.size
us = np.nan*np.ones((maxiter,du))
vs = np.nan*np.ones((maxiter,dv))
fs = np.nan*np.ones((maxiter))
gs = np.nan*np.ones((maxiter))
us[0,:] = u0
vs[0,:] = v0
f,fu,fv,fuu,fuv,fvu,fvv = fn(u0,v0,args)
fs[0] = f
gs[0] = l2norm(fu,fv)
for it in range(maxiter-1):
if False:#eta==None: # line search
us[it+1,:],vs[it+1,:] = linesearch_proj(fn,us[it,:],vs[it,:],-fu,fv,args,proj)
else:
us[it+1,:],vs[it+1,:] = fixedstepsize_proj(fn,us[it,:],vs[it,:],-fu,fv,eta,args,proj,it+1)
f,fu,fv,fuu,fuv,fvu,fvv = fn(us[it+1,:],vs[it+1,:],args)
fs[it+1] = f
gs[it+1] = l2norm(fu,fv)
return [us,vs,fs,gs]
def AltGD(maxiter,u0,v0,eta,fn,args,proj):
## alt
max_step = 1
min_step = 1
du = u0.size
dv = v0.size
us = np.nan*np.ones((maxiter,du))
vs = np.nan*np.ones((maxiter,dv))
fs = np.nan*np.ones((maxiter))
gs = np.nan*np.ones((maxiter))
us[0,:] = u0
vs[0,:] = v0
f,fu,fv,fuu,fuv,fvu,fvv = fn(u0,v0,args)
fs[0] = f
gs[0] = l2norm(fu,fv)
#it = 0
for it in range(maxiter-1):
u = us[it,:]
v = vs[it,:]
for it_max in range(max_step):
if False:#eta==None: # line search
_,v = linesearch_proj(fn,u,v,np.zeros((du)),fv,args,proj)
else:
_,v = fixedstepsize_proj(fn,u,v,np.zeros((du)),fv,eta,args,proj,it+1)
f,fu,fv,fuu,fuv,fvu,fvv = fn(u,v,args)
for it_min in range(min_step):
if False:#eta==None: # line search
u,_ = linesearch_proj(fn,u,v,-fu,np.zeros((dv)),args,proj)
else:
u,_ = fixedstepsize_proj(fn,u,v,-fu,np.zeros((dv)),eta,args,proj,it+1)
f,fu,fv,fuu,fuv,fvu,fvv = fn(u,v,args)
us[it+1] = u
vs[it+1] = v
fs[it+1] = f
gs[it+1] = l2norm(fu,fv)
return [us,vs,fs,gs]
## Increasing V, incremental updates
def minimax1(maxiter,nextra,u0,v0,eta,fn,args,proj):
max_step = 1
min_step = 1
du = u0.size
dv = v0.size
us = np.nan*np.ones((maxiter,du))
vs = np.nan*np.ones((maxiter,dv))
fs = np.nan*np.ones((maxiter))
gs = np.nan*np.ones((maxiter))
us[0,:] = u0
vs[0,:] = v0
f,fu,fv,fuu,fuv,fvu,fvv = fn(u0,v0,args)
fs[0] = f
gs[0] = l2norm(fu,fv)
#Vrand = np.linspace(-0.5,0.5,nextra)
#np.random.shuffle(Vrand)
Vrand = np.random.rand
for it in range(maxiter-1):
## min step:
# True: min_u max_{1<=i<=k} f(u,v_i), Approx: min_u log-sum-exp(f(u,v_i))
# nabla_u log-sum-exp(f(u,v_i)) = sum_i [exp(fi) nabla_u fi]/(sum_i exp(fi))
# A few steps of gradient descent updates
# Directional derivative
# Dw (max_i fi(u)) = max_i <nabla fi(u),w>
# nabla (max_i fi(u))_j = Dej (...) = max_i <nabla fi(u),e_j>
u = us[it,:]
#v = vs[it,:]
for it_min in range(min_step):
fus = np.zeros((it+1+nextra,du))
fvals = np.zeros((it+1+nextra))
for i in range(it+1): # max among all vi and Vrand
f,fu,_,_,_,_,_ = fn(u,vs[i,:],args)
fvals[i] = f
fus[i,:] = fu
for i in range(nextra):
f,fu,_,_,_,_,_ = fn(u,Vrand[i],args)
fvals[it+1+i] = f
fus[it+1+i,:] = fu
indmax = fvals.argmax(axis=0)
gmax = fus[indmax,:]
if indmax>it:
vmax = Vrand[indmax-it-1]
else :
vmax = vs[indmax]
if False:#eta==None: # line search
u,_ = linesearch_proj(fn,u,vmax,-gmax,np.zeros((dv)),args,proj)
else:
u,_ = fixedstepsize_proj(fn,u,vmax,-gmax,np.zeros((dv)),eta,args,proj,it+1)
## max step:
# vmax = argmax_v\inVi f(ui,v)
# v(i+1) = vmax + \eta*df(ui,vmax)/dv
for it_max in range(max_step):
fvs = np.zeros((it+1+nextra,du))
fvals = np.zeros((it+1+nextra))
for i in range(it+1): # max among all vi and Vrand
f,_,fv,_,_,_,_ = fn(u,vs[i,:],args)
fvals[i] = f
fvs[i,:] = fv
for i in range(nextra):
f,_,fv,_,_,_,_ = fn(u,Vrand[i],args)
fvals[it+1+i] = f
fvs[it+1+i,:] = fv
indmax = fvals.argmax(axis=0)
gmax = fvs[indmax,:]
if indmax>it:
vmax = Vrand[indmax-it-1]
else :
vmax = vs[indmax]
if False:#eta==None: # line search
_,v = linesearch_proj(fn,u,vmax,np.zeros((du)),gmax,args,proj)
else:
_,v = fixedstepsize_proj(fn,u,vmax,np.zeros((du)),gmax,eta,args,proj,it+1)
f,fu,fv,fuu,fuv,fvu,fvv = fn(u,v,args)
us[it+1] = u
vs[it+1] = v
fs[it+1] = f
gs[it+1] = l2norm(fu,fv)
return [us,vs,fs,gs]
## Fixed V, incremental updates
def minimax2(maxiter,K,u0,V,eta,fn,args,proj):
max_step = 1
min_step = 1
v0 = V[0]
du = u0.size
dv = v0.size
us = np.nan*np.ones((maxiter,du))
vs = np.nan*np.ones((maxiter,dv))
fs = np.nan*np.ones((maxiter))
gs = np.nan*np.ones((maxiter))
us[0,:] = u0
vs[0,:] = v0
f,fu,fv,fuu,fuv,fvu,fvv = fn(u0,v0,args)
fs[0] = f
gs[0] = l2norm(fu,fv)
#np.random.shuffle(V)
for it in range(maxiter-1):
# Directional derivative
# Dw (max_i fi(u)) = max_i <nabla fi(u),w>
# nabla (max_i fi(u))_j = Dej (...) = max_i <nabla fi(u),e_j>
u = us[it,:]
for it_min in range(min_step):
fus = np.zeros((K,du))
fvals = np.zeros((K))
for k in range(K): # max among V
f,fu,_,_,_,_,_ = fn(u,V[k],args)
fvals[k] = f
fus[k,:] = fu
indmax = fvals.argmax(axis=0)
gmax = fus[indmax,:]
vmax = V[indmax]
if False:#eta==None: # line search
u,_ = linesearch_proj(fn,u,vmax,-gmax,np.zeros((dv)),args,proj)
else:
u,_ = fixedstepsize_proj(fn,u,vmax,-gmax,np.zeros((dv)),eta,args,proj,it+1)
## max step:
# For k in 1:K, v(k,i+1) = v(k,i) + \eta(k,i) df(uk,v(k,i))/dv
for it_max in range(max_step):
fvs = np.zeros((K,du))
fvals = np.zeros((K))
for k in range(K): # max among V
f,_,fv,_,_,_,_ = fn(u,V[k],args)
fvals[k] = f
fvs[k,:] = fv
indmax = fvals.argmax(axis=0)
# Update all V's
for k in range(K):
if False:#eta==None: # line search
_,V[k] = linesearch_proj(fn,u,V[k],np.zeros((du)),fvs[k,:],args,proj)
else:
_,V[k] = fixedstepsize_proj(fn,u,V[k],np.zeros((du)),fvs[k,:],eta,args,proj,it+1)
f,fu,fv,fuu,fuv,fvu,fvv = fn(u,V[indmax],args)
us[it+1] = u
vs[it+1] = V[indmax] # This doesn't really matter.
fs[it+1] = f
gs[it+1] = l2norm(fu,fv)
return [us,vs,fs,gs]
## epsilon-steepest descent
solvers.options['maxiters'] = 20
solvers.options['show_progress'] = False
def EpsSteepestDescentDirection(grads):
# solve min_{g \in L_eps(u)} \|g\|^2
# min {a} a'ZZ'a, s.t. a>=0 and a'1 = 1.
n = len(grads)
Z = np.zeros((0,))
for i in range(n):
L = len(grads[i])
for l in range(L):
Z = np.concatenate((Z,grads[i][l].flatten()))
#for i in range(len(grads[0])):
# print grads[0][i].shape
d = len(Z)/n #=49666
Z = Z.reshape(n,d)
P = matrix(2.*Z.dot(Z.T))
q = matrix(0.0, (n,1))
G = matrix(-np.eye(n))
h = matrix(0.0, (n,1))
A = matrix(1.0, (1,n))
b = matrix(1.0)
# 1/2x'Px + q'x, Gx<=h, Ax=b
sol = solvers.qp(P,q,G,h,A,b)
z = np.dot(sol['x'].T,Z)
if False:#np.random.rand(1)>.95:
print n
print sol['x']
print sol['status']
if np.random.randn(1)>0.95:
if any(np.dot(Z,z.T)<0):
print np.dot(Z,z.T)
print 'negative angle!!!!'
asdfasd
return [sol['x'],z]#sol['primal objective']]
def minimax3(maxiter,K,u0,V,eta,fn,args,proj):
max_step = 1
min_step = 1
v0 = V[0]
du = u0.size
dv = v0.size
us = np.nan*np.ones((maxiter,du))
vs = np.nan*np.ones((maxiter,dv))
fs = np.nan*np.ones((maxiter))
gs = np.nan*np.ones((maxiter))
us[0,:] = u0
vs[0,:] = v0
f,fu,fv,fuu,fuv,fvu,fvv = fn(u0,v0,args)
fs[0] = f
gs[0] = l2norm(fu,fv)
#np.random.shuffle(V)
for it in range(maxiter-1):
# Directional derivative
# Dw (max_i fi(u)) = max_i <nabla fi(u),w>
# nabla (max_i fi(u))_j = Dej (...) = max_i <nabla fi(u),e_j>
u = us[it,:]
for it_min in range(min_step):
fus = np.zeros((K,du))
fvals = np.zeros((K))
for k in range(K): # max among V
f,fu,_,_,_,_,_ = fn(u,V[k],args)
fvals[k] = f
fus[k,:] = fu
indmax = fvals.argmax(axis=0)
#gmax = fus[indmax,:]
#vmax = V[indmax]
ids_eps = np.where(fvals>=fvals[indmax]-eps)[0]
if len(ids_eps)==1:
sess.run(optim_min[ids_eps[0]],feed_dict)
gnsq = sess.run(gradnormsq[ids_eps[0]],feed_dict)
else:
# Solve QP
a, z = EpsSteepestDescentDirection(fus[ids_eps])
#gmax = z/np.sqrt(np.sum(z**2))
gmax = z
#print np.sqrt(gnsq)
if False:#eta==None: # line search
u,_ = linesearch_proj(fn,u,v0,-gmax,np.zeros((dv)),args,proj)
else:
u,_ = fixedstepsize_proj(fn,u,v0,-gmax,np.zeros((dv)),eta,args,proj,it+1)
## max step:
# For k in 1:K, v(k,i+1) = v(k,i) + \eta(k,i) df(uk,v(k,i))/dv
for it_max in range(max_step):
fvs = np.zeros((K,du))
fvals = np.zeros((K))
for k in range(K): # max among V
f,_,fv,_,_,_,_ = fn(u,V[k],args)
fvals[k] = f
fvs[k,:] = fv
indmax = fvals.argmax(axis=0)
# Update all V's
for k in range(K):
if False:#eta==None: # line search
_,V[k] = linesearch_proj(fn,u,V[k],np.zeros((du)),fvs[k,:],args,proj)
else:
_,V[k] = fixedstepsize_proj(fn,u,V[k],np.zeros((du)),fvs[k,:],eta,args,proj,it+1)
f,fu,fv,fuu,fuv,fvu,fvv = fn(u,V[indmax],args)
us[it+1] = u
vs[it+1] = V[indmax] # This doesn't really matter.
fs[it+1] = f
gs[it+1] = l2norm(fu,fv)
return [us,vs,fs,gs]
def proj_linf(u,v,th=0.5):
u = np.clip(u,-th,th)#np.maximum(u,-2)
v = np.clip(v,-th,th)
return [u,v]
def l2norm(u,v):
return np.sqrt((u**2).sum()+(v**2).sum())
def fixedstepsize_proj(fn,u0,v0,delu,delv,eta,args,proj,t=1.):
#r = np.sqrt(delu**2 + delv**2)
#delu /= r
#delv /= r
if True:
u_ = u0 + eta/np.sqrt(t)*delu
v_ = v0 + eta/np.sqrt(t)*delv
else:
u_ = u0 + eta/t*delu
v_ = v0 + eta/t*delv
u_,v_ = proj(u_,v_)
return u_,v_
####################################################################################################
## Compare sgd, alt, gradnorm for fixed learning rates
# Examples of saddle points = f1, f2, f8
# Examples of no saddle points = f32, f12, f9
eta = 1E-1
ntrial = 100
maxiter = 1000
labels=['GD','Alt-GD','minimax K=1','minimax K=2','minimax K=5','minimax K=10']
nmethods = len(labels)
errs_norm = np.nan*np.ones((6,ntrial,maxiter,nmethods))
for i,fn in enumerate([f1,f2,f8,f32,f12,f9]):
print '\n\nExample %d/%d'%(i,6)
args = np.zeros(0)
proj = proj_linf
if i==3:
uast = np.array([-0.25,0.25])
else:
uast = np.array([0.])
for trial in range(ntrial):
#print 'Trial %d/%d'%(trial,ntrial)
u0 = 0.45*(2.*np.random.rand(1)-1.)
V = 0.45*(2*np.random.rand(10)-1.)
v0 = V[0]
#u0,v0 = proj(u0,v0)
nextra = 0
us1,vs1,fs1,gs1 = GD(maxiter,u0,v0,eta,fn,args,proj)
us2,vs2,fs2,gs2 = AltGD(maxiter,u0,v0,eta,fn,args,proj)
us3,vs3,fs3,gs3 = minimax2(maxiter,1,u0,[v0],eta,fn,args,proj)
us4,vs4,fs4,gs4 = minimax2(maxiter,2,u0,V[:2],eta,fn,args,proj)
us5,vs5,fs5,gs5 = minimax2(maxiter,5,u0,V[:5],eta,fn,args,proj)
us6,vs6,fs6,gs6 = minimax2(maxiter,10,u0,V,eta,fn,args,proj)
uss=[us1,us2,us3,us4,us5,us6]
vss=[vs1,vs2,vs3,vs4,vs5,vs6]
fss=[fs1,fs2,fs3,fs4,fs5,fs6]
gss=[gs1,gs2,gs3,gs4,gs5,gs6]
if i==3:
errs_norm[i,trial,:,0] = np.minimum(np.abs(us1-uast[0]),np.abs(us1-uast[1])).reshape((maxiter))
errs_norm[i,trial,:,1] = np.minimum(np.abs(us2-uast[0]),np.abs(us2-uast[1])).reshape((maxiter))
errs_norm[i,trial,:,2] = np.minimum(np.abs(us3-uast[0]),np.abs(us3-uast[1])).reshape((maxiter))
errs_norm[i,trial,:,3] = np.minimum(np.abs(us4-uast[0]),np.abs(us4-uast[1])).reshape((maxiter))
errs_norm[i,trial,:,4] = np.minimum(np.abs(us5-uast[0]),np.abs(us5-uast[1])).reshape((maxiter))
errs_norm[i,trial,:,5] = np.minimum(np.abs(us6-uast[0]),np.abs(us6-uast[1])).reshape((maxiter))
else:
errs_norm[i,trial,:,0] = np.abs(us1-uast[0]).squeeze()
errs_norm[i,trial,:,1] = np.abs(us2-uast[0]).squeeze()
errs_norm[i,trial,:,2] = np.abs(us3-uast[0]).squeeze()
errs_norm[i,trial,:,3] = np.abs(us4-uast[0]).squeeze()
errs_norm[i,trial,:,4] = np.abs(us5-uast[0]).squeeze()
errs_norm[i,trial,:,5] = np.abs(us6-uast[0]).squeeze()
tmean = errs_norm[i,:(trial+1),-1,:].mean(0).squeeze()
print 'trial %d/%d, test error: %4.3f (%s), %4.3f (%s), %4.3f (%s), %4.3f (%s), %4.3f (%s), %4.3f (%s)'%(trial,ntrial,tmean[0],labels[0],tmean[1],labels[1],tmean[2],labels[2],tmean[3],labels[3],tmean[4],labels[4],tmean[5],labels[5])
tmean = errs_norm[:,:,-1,:].mean(1).squeeze()
tstd = errs_norm[:,:,-1,:].std(1).squeeze()
for i in range(6):
print '\\'
for j in range(nmethods):
print '%4.3f \\pm %4.3f &'%(tmean[i,j],tstd[i,j]),