-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcategories.py
executable file
·189 lines (139 loc) · 5.53 KB
/
categories.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/python3
"""
Description
-----------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
# logging
import __main__
import logging
import os
script=os.path.basename(__main__.__file__)
script=os.path.splitext(script)[0]
logger = logging.getLogger(script + "." + __name__)
import re
import quiffen
import csv
def determineAccountNames(account_dict_, csvlist_):
"""
Determine GnuCashAccountName from account number (typically IBAN)
For total list of transactions
Keyword arguments:
:param dict account_dict_: key:value --> iban:(gnucash account name, priority, qif account)
:param list of dictionaries csvlist: list of dictionaries of transactions
"""
for transaction in csvlist_:
try:
transaction['fromaccountname'] = account_dict_[ transaction['iban'] ]['gnuaccountname']
except:
transaction['fromaccountname'] = ""
try:
transaction['toaccountname'] = account_dict_[ transaction['to_iban'] ]['gnuaccountname']
except:
transaction['toaccountname'] = ""
# Check if a category is defined
# Check if category matches a GnuCash account
# Copy to iban_to and accounttoname
if transaction['category'] != "":
to_iban = getIBAN(account_dict_, transaction['category'].name)
if to_iban != 0:
transaction['to_iban'] = to_iban
transaction['toaccountname'] = transaction['category'].name
return 0
def getIBAN(account_dict_, gnucashaccountname_):
"""
Return account number (typically IBAN) for a given GnuCashAccountName
Keyword arguments:
:param dict account_dict_: key:value --> iban:(gnucash account name, priority, qif account)
:param str gnucashaccountname_:
:return account number (IBAN)
:rtype str
"""
for account in account_dict_:
if account_dict_[account]['gnuaccountname'] == gnucashaccountname_:
return account
return 0
def determineCategories(csvlist_, category_regex):
"""
Determine category for all transactions, based on regex defined in accounts.csv
Keyword arguments:
:param list of dictionaries csvlist: list of dictionaries of transactions
:param list of dictionaries category_regex: list of dictionaries regular expressions for payee and memo
"""
for transaction in csvlist_:
# Try to determine category when to account is not a GnuCash account
if transaction['toaccountname'] == "":
determineCategory(transaction, category_regex)
return 0
def determineCategory(csv, category_regex):
"""
Determine category for one transactions, based on regex defined in accounts.csv
Keyword arguments:
:param dictionary csv: transaction
:param list of dictionaries category_regex: list of dictionaries regular expressions for payee and memo
:return updated transaction (csv)
:rtype dictionary
"""
# TODO
# also add check regex payee AND MEMO
for dict in category_regex:
# only try to match of there is a payee
regex = dict["payeeregex"].lower()
# check if payee is defined and regex is defined
if len(csv["payee"]) > 0 and len(regex) > 0 and re.match(regex, csv["payee"].lower()):
# append payee to memo before payee is modified
csv["memo"] = csv["payee"] + "||" + csv["memo"]
csv["payee"] = dict["payee"]
# add quiffen category
csv["category"] = quiffen.Category(dict["category"])
# break from loop as a match has been made
break
# only try to match of there is a memo
regex = dict["memoregex"].lower()
# check if memo is defined and regex is defined
if len(csv["memo"]) > 0 and len(regex) > 0 and re.match(regex, csv["memo"].lower()):
# append payee to memo before payee is modified
csv["memo"] = csv["payee"] + "||" + csv["memo"]
# Update payee if one is prescribed
if len(dict["payee"]) > 0:
csv["payee"] = dict["payee"]
# add quiffen category
csv["category"] = quiffen.Category( dict["category"] )
# break from loop as a match has been made
break
return csv
# ------------------------------------------------------------------------------------
#
#
# ------------------------------------------------------------------------------------
def readCategory(categoryscv):
"""
Read all regex from categories file
Keyword arguments:
:param str categoryscv: filename csv file with all category regex-es.
:return list of dictionaries regular expressions for payee and memo
:rtype list of dictionaries
"""
category_regex = []
category_dict = {}
with open(categoryscv, newline='', mode='r', encoding='latin1') as csvfp:
csvIn = csv.reader(csvfp, delimiter=",") # create csv object using the given separator
# skip header line
next(csvIn, None)
for row in csvIn:
category_dict.clear()
category_dict["payee"] = row[0]
category_dict["category"] = row[1]
category_dict["payeeregex"] = row[2]
category_dict["memoregex"] = row[3]
category_regex.append(category_dict.copy())
return category_regex