-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathXceptionNet
117 lines (92 loc) · 4.03 KB
/
XceptionNet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
import torch.nn as nn
class SeparableConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=False):
super(SeparableConv2d, self).__init__()
self.sep_conv = nn.Sequential(
nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, groups=in_channels, bias=bias, padding=1),
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias)
)
def forward(self, x):
return self.sep_conv(x)
class BasicConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
super(BasicConvBlock, self).__init__()
self.conv_block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU()
)
def forward(self, x):
return self.conv_block(x)
class SeperableConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, use_relu=True):
super(SeperableConvBlock, self).__init__()
self.conv_block = nn.Sequential(
SeparableConv2d(in_channels, out_channels, kernel_size),
nn.BatchNorm2d(out_channels)
)
self.relu = nn.ReLU()
self.use_relu = use_relu
def forward(self, x):
return self.relu(self.conv_block(x)) if self.use_relu else self.conv_block(x)
class SeperableResidualConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(SeperableResidualConvBlock, self).__init__()
self.relu = nn.ReLU()
self.first_block = SeperableConvBlock(in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
use_relu=True)
self.second_block = SeperableConvBlock(in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
use_relu=False)
self.conv = nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=2)
def forward(self, x):
residual = x
x = self.first_block(x)
x = self.second_block(x)
x = self.relu(torch.add(residual, x))
return self.relu(self.conv(x))
class XceptionNet(nn.Module):
def __init__(self, in_channels, num_classes):
super(XceptionNet, self).__init__()
self.first_block = nn.Sequential(
BasicConvBlock(in_channels=in_channels, out_channels=32, kernel_size=3, stride=2, padding=0),
BasicConvBlock(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=0)
)
layers = list()
last_layer_out = 64
for size in [128, 256, 512, 728]:
layers.append(SeperableResidualConvBlock(in_channels=last_layer_out, out_channels=size))
last_layer_out = size
layers.append(SeperableConvBlock(in_channels=last_layer_out, out_channels=1024, kernel_size=3, use_relu=True))
layers.append(nn.AvgPool2d(kernel_size=3))
self.sep_res_layers = nn.Sequential(*layers)
self.dropout = nn.Dropout(0.5)
self.fc1 = nn.Linear(4096, 1024)
self.relu = nn.ReLU()
if num_classes == 2:
self.last_act = nn.Sigmoid()
self.fc2 = nn.Linear(1024, 1)
else:
self.last_act = nn.Softmax(dim=1)
self.fc2 = nn.Linear(1024, num_classes)
def forward(self, x):
x = self.first_block(x)
x = self.sep_res_layers(x)
x = self.dropout(x)
x = x.reshape(x.size(0), -1)
x = self.relu(self.fc1(x))
x = self.last_act(self.fc2(x))
return x
def test():
rand_tensor = torch.rand((1, 3, 256, 256))
net = XceptionNet(3, 10)
print(net(rand_tensor))
if __name__ == '__main__':
test()