-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_Xception
49 lines (42 loc) · 1.69 KB
/
train_Xception
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import os
import torch.nn as nn
from torch.utils.data import DataLoader
from XceptionNet import XceptionNet
from celebdf_dataset import CelebDFDataset
# 定义数据预处理
from torchvision import transforms
root_dir = r"D:\trace_prediction\forgery_detection\dataset"
train_data_path = "train"
label_file_path = "label_file.txt"
# transform = transforms.Compose(
# [transforms.Resize(256),
# transforms.CenterCrop(224),
# transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225])])
train_dataset = CelebDFDataset(root_dir, train_data_path, label_file_path)
train_dataset._build_label_file_map()
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
def train(model, train_loader, optimizer, criterion, device):
# model.train()
running_loss = 0.0
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(train_loader.dataset)
return epoch_loss
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = XceptionNet(3, 2).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
num_epochs = 10
for epoch in range(num_epochs):
train_loss = train(model, train_loader, optimizer, criterion, device)
print(f'Epoch {epoch + 1}/{num_epochs}, Train_Loss:{train_loss:.4f}')
torch.save(model.state_dict(), 'model.pth')