-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmmk.py
325 lines (241 loc) · 9.05 KB
/
mmk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import heapq
import random
import numpy
import matplotlib.pyplot as plt
# Parameters
class Params:
def __init__(self, lambd, omega, k):
self.lambd = lambd
self.omega = omega
self.k = k
# States and statistical counters
class States:
def __init__(self):
# States
self.queue = []
#extra
self.totalServers = 0
self.idleServers = 0
self.totalOfDelays = 0.0
self.totalQLength = 0.0
self.serverUtil = 0.0
self.isNowServing = False
self.arrivalCustomers = 0
self.servedCustomers = 0
self.isDepartureSchedule = False
# Statistics
self.util = 0.0
self.avgQdelay = 0.0
self.avgQlength = 0.0
self.served = 0
def initialize(self,total):
self.totalServers = total
self.idleServers = total
def update(self, sim, event):
#xtra
if event.eventType == 'START':
pass
#update statistics
time_since_last_event = float(event.eventTime - sim.simclock)
self.totalQLength += float(len(self.queue) * time_since_last_event)
#print('eventType %s %lf' % (event.eventType,event.eventTime))
#print('idleServer %d' %(self.idleServers))
#if int(self.totalServers - self.idleServers) > 0:
#print('yes active')
self.serverUtil += (self.idleServers/self.totalServers)*time_since_last_event
if event.eventType == 'ARRIVAL':
if self.idleServers == 0:
self.queue.append(event.eventTime)
self.isNowServing = False
else:
self.idleServers -= 1
self.isNowServing = True
elif event.eventType == 'DEPARTURE':
if len(self.queue) == 0:
self.idleServers += 1
self.servedCustomers += 1
self.isDepartureSchedule = False
else:
#calculate delays of next customer
self.totalOfDelays += float(event.eventTime - self.queue[0])
del self.queue[0]
self.servedCustomers += 1
self.isDepartureSchedule = True
def finish(self, sim):
self.avgQlength = float(self.totalQLength / sim.simclock)
self.avgQdelay = float(self.totalOfDelays / (1.0 * self.servedCustomers))
self.util = float(self.serverUtil / sim.simclock)
self.served = int(self.servedCustomers)
def printResults(self, sim):
# DO NOT CHANGE THESE LINES
print('MMk Results: lambda = %lf, omega = %lf, k = %d' % (sim.params.lambd, sim.params.omega, sim.params.k))
print('MMk Total customer served: %d' % (self.served))
print('MMk Average queue length: %lf' % (self.avgQlength))
print('MMk Average customer delay in queue: %lf' % (self.avgQdelay))
print('MMk Time-average server utility: %lf' % (self.util))
def getResults(self, sim):
return (self. avgQlength, self.avgQdelay, self.util)
class Event:
def __init__(self, sim):
self.eventType = None
self.sim = sim
self.eventTime = None
def process(self, sim):
raise Exception('Unimplemented process method for the event!')
def __repr__(self):
return self.eventType
class StartEvent(Event):
def __init__(self, eventTime, sim):
self.eventTime = eventTime
self.eventType = 'START'
self.sim = sim
def process(self, sim):
new_arrival_time = -(1.0/sim.params.lambd)*numpy.log(numpy.random.random_sample())
#new_arrival_time = float(sim.simclock + random.expovariate(sim.params.lambd))
sim.states.arrivalCustomers += 1
sim.scheduleEvent(ArrivalEvent(new_arrival_time, sim))
class ExitEvent(Event):
def __init__(self, eventTime, sim):
self.eventTime = eventTime
self.eventType = 'EXIT'
self.sim = sim
def process(self, sim):
None
class ArrivalEvent(Event):
def __init__(self, eventTime, sim):
self.eventTime = eventTime
self.eventType = 'ARRIVAL'
self.sim = sim
def process(self, sim):
new_arrival_time = -(1.0 / sim.params.lambd) * numpy.log(numpy.random.random_sample())
new_arrival_time += sim.simclock
if sim.states.arrivalCustomers < 1000:
sim.states.arrivalCustomers += 1
sim.scheduleEvent(ArrivalEvent(new_arrival_time, sim))
if sim.states.isNowServing == True:
#immediate service so delay for this customer is 0
sim.states.totalOfDelays += 0.0
new_departure_time = -(1.0 / sim.params.omega) * numpy.log(numpy.random.random_sample())
new_departure_time += sim.simclock
#print('yes')
#print(new_departure_time)
sim.scheduleEvent(DepartureEvent(new_departure_time,sim))
class DepartureEvent(Event):
def __init__(self, eventTime, sim):
self.eventTime = eventTime
self.eventType = 'DEPARTURE'
self.sim = sim
def process(self, sim):
if(sim.states.isDepartureSchedule == True):
#calculate next departure schedule
new_departure_time = -(1.0 / sim.params.omega) * numpy.log(numpy.random.random_sample())
new_departure_time += sim.simclock
sim.scheduleEvent(DepartureEvent(new_departure_time, sim))
class Simulator:
def __init__(self, seed):
self.eventQ = []
self.simclock = 0.0
self.seed = seed
self.params = None
self.states = None
def initialize(self):
self.simclock = 0.0
numpy.random.seed(self.seed)
self.scheduleEvent(StartEvent(0, self))
def configure(self, params, states):
self.params = params
self.states = states
self.states.initialize(self.params.k)
def now(self):
return self.simclock
def scheduleEvent(self, event):
heapq.heappush(self.eventQ, (event.eventTime, event))
def run(self):
self.initialize()
while len(self.eventQ) > 0:
time, event = heapq.heappop(self.eventQ)
if event.eventType == 'EXIT':
break
if self.states != None:
self.states.update(self, event)
print (event.eventTime, 'Event', event)
self.simclock = event.eventTime
event.process(self)
self.states.finish(self)
def printResults(self):
self.states.printResults(self)
def getResults(self):
return self.states.getResults(self)
def experiment1():
seed = 101
sim = Simulator(seed)
sim.configure(Params(5.0/60, 8.0/60, 3), States())
sim.run()
sim.printResults()
def experiment2():
seed = 110
omega = 1000.0 / 60
ratios = [u / 10.0 for u in range(1, 11)]
avglength = []
avgdelay = []
util = []
for ro in ratios:
sim = Simulator(seed)
sim.configure(Params(omega * ro, omega, 1), States())
sim.run()
length, delay, utl = sim.getResults()
avglength.append(length)
avgdelay.append(delay)
util.append(utl)
plt.figure(1)
plt.subplot(311)
plt.plot(ratios, avglength)
plt.xlabel('Ratio (ro)')
plt.ylabel('Avg Q length')
plt.subplot(312)
plt.plot(ratios, avgdelay)
plt.xlabel('Ratio (ro)')
plt.ylabel('Avg Q delay (sec)')
plt.subplot(313)
plt.plot(ratios, util)
plt.xlabel('Ratio (ro)')
plt.ylabel('Util')
plt.show()
def experiment3():
# Similar to experiment2 but for different values of k; 1, 2, 3, 4
# Generate the same plots
k = random.randint(2,6)
seed = 110
omega = 1000.0 / 60
ratios = [u / 10.0 for u in range(1, 11)]
avglength = []
avgdelay = []
util = []
for ro in ratios:
sim = Simulator(seed)
sim.configure(Params(omega * ro, omega, k), States())
sim.run()
length, delay, utl = sim.getResults()
avglength.append(length)
avgdelay.append(delay)
util.append(utl)
plt.figure(1)
plt.subplot(311)
plt.plot(ratios, avglength)
plt.xlabel('Ratio (ro)')
plt.ylabel('Avg Q length')
plt.subplot(312)
plt.plot(ratios, avgdelay)
plt.xlabel('Ratio (ro)')
plt.ylabel('Avg Q delay (sec)')
plt.subplot(313)
plt.plot(ratios, util)
plt.xlabel('Ratio (ro)')
plt.ylabel('Util')
plt.show()
def main():
experiment1()
#experiment2()
#experiment3()
if __name__ == "__main__":
main()