-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrpo.py
218 lines (192 loc) · 8.86 KB
/
trpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gym
import copy
import torch
import numpy as np
import matplotlib.pyplot as plt
from torch import nn, optim
from torch.nn import functional as F
from dqn import smooth_data, dis_to_con
from actor_critic import PolicyNet, ValueNet
def cal_advantage(td_deltas, gamma, lmbda):
advantages = [ ]
advantage = 0
td_deltas = td_deltas.detach().numpy()
for delta in td_deltas[ ::-1 ]:
advantage = gamma * lmbda * advantage + delta
advantages.append(advantage)
advantages.reverse()
return torch.from_numpy(np.array(advantages)).float()
class TRPO:
def __init__(self, d_state, d_action, critic_lr, gamma, lmbda, alpha, kl_constraint, device='cpu'):
self.actor = PolicyNet(d_state, d_action).to(device)
self.critic = ValueNet(d_state).to(device)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=critic_lr)
self.d_state = d_state
self.d_action = d_action
self.gamma = gamma
self.lmbda = lmbda
self.alpha = alpha
self.kl_constraint = kl_constraint
self.device = device
def take_action(self, states):
states = torch.from_numpy(states).float().view(-1, self.d_state).to(self.device)
probs = self.actor(states)
actor_dist = torch.distributions.Categorical(probs)
actions = actor_dist.sample().item()
return actions
def hessian_matrix_vector_product(self, states, old_action_dists, vector):
# 计算黑塞矩阵和一个向量的乘积
new_action_dists = torch.distributions.Categorical(self.actor(states))
# 计算平均KL距离
kl = (torch.distributions.kl.kl_divergence(old_action_dists,
new_action_dists)).mean()
kl_grad = torch.autograd.grad(kl,
self.actor.parameters(),
create_graph=True)
kl_grad_vector = torch.cat([ grad.view(-1) for grad in kl_grad ])
# KL距离的梯度先和向量进行点积运算
kl_grad_vector_product = torch.dot(kl_grad_vector, vector)
grad2 = torch.autograd.grad(kl_grad_vector_product,
self.actor.parameters())
grad2_vector = torch.cat([ grad.view(-1) for grad in grad2 ])
return grad2_vector
def conjugate_gradient(self, grad, states, old_action_dists):
# 共轭梯度法求解方程
x = torch.zeros_like(grad)
r = grad.clone()
p = grad.clone()
rdotr = torch.dot(r, r)
for i in range(10):
Hp = self.hessian_matrix_vector_product(states, old_action_dists, p)
alpha = rdotr / torch.dot(p, Hp)
x += alpha * p
r -= alpha * Hp
new_rdotr = torch.dot(r, r)
if new_rdotr < 1e-10:
break
beta = new_rdotr / rdotr
p = r + beta * p
rdotr = new_rdotr
return x
def cal_surrogate_obj(self, states, actions, advantage, old_log_probs, actor):
# 计算策略目标
log_probs = torch.log(actor(states).gather(1, actions))
ratio = torch.exp(log_probs - old_log_probs)
return torch.mean(ratio * advantage)
def linear_search(self, states, actions, advantage, old_log_probs,
old_action_dists, max_vec):
old_para = torch.nn.utils.convert_parameters.parameters_to_vector(self.actor.parameters())
old_obj = self.cal_surrogate_obj(states, actions, advantage,
old_log_probs, self.actor)
for i in range(15):
coef = self.alpha ** i
new_para = old_para + coef * max_vec
new_actor = copy.deepcopy(self.actor)
torch.nn.utils.convert_parameters.vector_to_parameters(
new_para, new_actor.parameters())
new_action_dists = torch.distributions.Categorical(
new_actor(states))
kl_div = (torch.distributions.kl.kl_divergence(old_action_dists,
new_action_dists)).mean()
new_obj = self.cal_surrogate_obj(states, actions, advantage,
old_log_probs, new_actor)
if new_obj > old_obj and kl_div < self.kl_constraint:
return new_para
return old_para
def policy_learn(self, states, actions, old_action_dists, old_log_probs, advantage):
surrogate_obj = self.cal_surrogate_obj(states, actions, advantage,
old_log_probs, self.actor)
grads = torch.autograd.grad(surrogate_obj, self.actor.parameters())
obj_grad = torch.cat([ grad.view(-1) for grad in grads ]).detach()
# 用共轭梯度法计算 x = H^{-1}g
descent_direction = self.conjugate_gradient(obj_grad, states,
old_action_dists)
Hd = self.hessian_matrix_vector_product(states, old_action_dists,
descent_direction)
max_coef = torch.sqrt(2 * self.kl_constraint / (descent_direction @ Hd + 1e-8))
new_para = self.linear_search(states, actions, advantage,
old_log_probs,
old_action_dists,
descent_direction * max_coef)
# 用线性搜索后的参数更新策略
torch.nn.utils.convert_parameters.vector_to_parameters(
new_para, self.actor.parameters())
def update(self, states, actions, rewards, next_states, dones):
self.critic_optimizer.zero_grad()
states = torch.from_numpy(states).float().view(-1, self.d_state).to(self.device)
actions = torch.from_numpy(actions).long().view(-1, 1).to(self.device)
rewards = torch.from_numpy(rewards).float().view(-1, 1).to(self.device)
next_states = torch.from_numpy(next_states).float().view(-1, self.d_state).to(self.device)
dones = torch.from_numpy(dones).to(torch.uint8).view(-1, 1).to(self.device)
td_target = rewards + self.gamma * self.critic(next_states) * (1 - dones)
td_delta = td_target - self.critic(states)
advantage = cal_advantage(td_delta.cpu(), self.gamma, self.lmbda).to(self.device)
old_log_probs = torch.log(self.actor(states).gather(1, actions)).detach()
old_action_dists = torch.distributions.Categorical(self.actor(states).detach())
critic_loss = (F.mse_loss(self.critic(states), td_target.detach())).mean()
critic_loss.backward()
self.critic_optimizer.step()
self.policy_learn(states,
actions,
old_action_dists,
old_log_probs,
advantage)
def train(env, agent, epoches=100, dis_action=True, debug=True):
reward_history = [ ]
for i in range(epoches):
reward_sum = 0
states = [ ]
actions = [ ]
rewards = [ ]
next_states = [ ]
dones = [ ]
state = env.reset()[ 0 ]
done = False
while not done:
action = agent.take_action(state)
if dis_action:
next_state, reward, done, truncated, _ = env.step(action)
else:
con_action = dis_to_con(action, agent.d_action, env)
next_state, reward, done, truncated, _ = env.step(np.array([ con_action ]))
done = done or truncated
states.append(state)
actions.append(action)
rewards.append(reward)
next_states.append(next_state)
dones.append(done)
state = next_state
reward_sum += reward
states = np.array(states)
actions = np.array(actions)
rewards = np.array(rewards)
next_states = np.array(next_states)
dones = np.array(dones, dtype=np.uint8)
agent.update(states, actions, rewards, next_states, dones)
reward_history.append(reward_sum)
if debug and (i + 1) % 10 == 0:
print(f"Epoch {i + 1}/{epoches}\tReward {reward_sum}")
return reward_history
if __name__ == '__main__':
env = gym.make('Pendulum-v1', render_mode='rgb_array')
con_d_action = 16
dis_action = False
d_action = env.action_space.n if dis_action else con_d_action
d_state = env.observation_space.shape[ 0 ]
critic_lr = 1e-2
gamma = 0.98
lmbda = 0.95
kl_constraint = 0.0005
alpha = 0.5
device = 'cuda' if torch.cuda.is_available() else 'cpu'
agent = TRPO(d_state, d_action,
critic_lr, gamma,
lmbda, alpha,
kl_constraint, device)
smooth_window_size = 8
hist = train(env, agent, 100, dis_action, True)
hist = smooth_data(hist, smooth_window_size)
plt.plot(hist)
plt.xlabel('Epoch')
plt.ylabel('Reward')
plt.show()