-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatabase.py
73 lines (63 loc) · 1.8 KB
/
database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import sqlite3
from pandas import *
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import matplotlib
import collections, numpy
from matplotlib import pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn import tree
import csv
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score
uname=input("Enter the name")
usn=input("Enter usn")
db=sqlite3.connect("std")
cnn=db.cursor()
sql="SELECT * FROM Student WHERE USN=? AND NAME=?"
cnn.execute(sql,[usn,uname])
row=cnn.fetchone()
global sie
global apt
global gd
global pi
if row:
print("Student found\n")
cer = "SELECT * FROM marks WHERE USN=?"
cnn.execute(cer,[usn])
row1=cnn.fetchone()
if row1:
print("Name: ",uname)
name=uname
print("USN: ",row1[0])
USN=row1[0]
print("SIE: ",row1[1])
sie=row1[1]
print("APT: ",row1[2])
apt=row1[2]
print("GD: ",row1[3])
gd=row1[3]
print("PI: ",row1[4])
pi=row1[4]
else:
print("NO records found\n")
else:
print("No records found")
exit(0)
cnn.close()
data=pd.read_csv("placement_data.csv",sep=",")
y=data.target
x=data.drop('target',axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.7,random_state=2)
model = tree.DecisionTreeClassifier(max_depth=5,max_leaf_nodes=10,criterion='entropy')
model.fit(x_train, y_train)
y_predict = model.predict([[sie,apt,gd,pi]])
print(y_predict)