-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
42 lines (36 loc) · 1.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import pandas as pd
import time
from geobleu import geobleu
pd.options.mode.chained_assignment = None
def convert_label_back(df):
'''
Convert label back to x, y
'''
df['predict_x'] = (df['label'] // 200) + 1
df['predict_y'] = (df['label'] % 200) + 1
return df
def get_time_str():
return time.strftime('%Y-%m-%d_%H:%M:%S', time.localtime(time.time()))
def load_data(city='A'):
'''
Load data from csv file
'''
if city == 'A':
df = pd.read_csv('your_path_here/cityA_groundtruthdata.csv.gz', compression='gzip')
else:
df = pd.read_csv(f'your_path_here/city{city}_challengedata.csv.gz', compression='gzip')
users = sorted(list(df['uid'].unique()))
predict_users = users[-3000:]
train_df = df[~df['uid'].isin(predict_users)]
predict_df = df[df['uid'].isin(predict_users)]
return train_df, predict_df
def calc_bleu_dtw_loss(generated, target):
'''
Calculate BLEU and DTW loss
tuple format: (uid, d, t, x, y) or (d, t, x, y)
'''
assert len(generated) == len(target)
geo_bleu = geobleu.calc_geobleu(generated, target, processes=3)
dtw = geobleu.calc_dtw(generated, target, processes=3)
accuracy = sum([1 for i in range(len(generated)) if generated[i] == target[i]]) / len(generated)
return geo_bleu, dtw, accuracy