-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata wrangling.Rmd
137 lines (91 loc) · 2.35 KB
/
data wrangling.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
title: "Data wrangling"
author: "Helen Fredricks"
date: "October 22, 2018"
output: html_document
---
```{r}
install.packages("readr")
install.packages("diplyr")
install.packages("tidyverse")
library(readr)
library(diplyr)
library(tidyverse)
```
```{r}
## read gapminder csv. Note the readr:: prefix identifies which package it's in
gapminder <- readr::read_csv('https://raw.githubusercontent.com/OHI-Science/data-science-training/master/data/gapminder.csv')
```
```{r}
filter(gapminder, lifeExp < 29)
filter(gapminder, country == "Mexico")
filter(gapminder, country %in% c("Mexico", "Peru", "Brazil"))
```
```{r}
# find mean life exp of sweden
sweden <- filter(gapminder, country == "Sweden")
mean(sweden$lifeExp)
```
```{r}
#select by columns
select(gapminder, year, lifeExp)
#everything but the columns you name
select(gapminder, -continent, -lifeExp)
#select and filter together
gap_cambodia <-filter(gapminder, country == "Cambodia")
gap_cambodia2 <- select(gap_cambodia, -continent, -lifeExp)
#lets improve this with pipes
gapcambodia2 <- gap_cambodia %>%
filter(country =="Cambodia") %>%
select(-continent, -lifeExp)
#pipes allows to simplify variables into more concise version
#keyboard shortcut, ctrl, shift, M
```
the pipe operator will change your life
```{r}
#this
gapminder %>% head(3)
#is equivalent to
head(gapminder, 3)
#head shows the top 3 rows
```
```{r}
#mutate() adds new variables
gapminder %>%
mutate(index = 1:nrow(gapminder))
gapminder %>%
mutate(planet = "Earth")
gapminder %>%
mutate(gdp = pop * gdpPercap)
```
```{r}
# find the max gdpPerCap of Egypt and Vietnam. create a new column (one column)
gapminder %>%
filter(country %in% c("Egypt", "Vietnam")) %>%
mutate(gdp = pop * gdpPercap) %>%
mutate(max_gdp = max(gdp))
```
```{r}
gapminder %>%
gap_grouped <- group_by(country) %>%
mutate(gdp = pop * gdpPercap,
max_gdp = max(gdp)) %>%
ungroup() # if you use group_by, also use ungroup() to save heartache later
```
```{r}
gapminder %>%
group_by(country) %>%
mutate(gdp = pop * gdpPercap,
max_gdp = max(gdp)) %>%
ungroup() %>%
tail(30)
```
```{r}
## with summarise or summarize
gap_summarised <- gapminder %>%
group_by(country) %>%
mutate(gdp = pop * gdpPercap) %>%
summarise(max_gdp = max(gdp)) %>%
ungroup () %>%
arrange(max_gdp)
```