forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdmrl_example.py
50 lines (43 loc) · 1.33 KB
/
dmrl_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""Example for Disentangled Multimodal Recommendation, with only feedback and textual modality.
For an example including image modality please see dmrl_clothes_example.py"""
import cornac
from cornac.data import Reader
from cornac.datasets import citeulike
from cornac.eval_methods import RatioSplit
from cornac.data import TextModality
# The necessary data can be loaded as follows
docs, item_ids = citeulike.load_text()
feedback = citeulike.load_feedback(reader=Reader(item_set=item_ids))
item_text_modality = TextModality(
corpus=docs,
ids=item_ids,
)
# Define an evaluation method to split feedback into train and test sets
ratio_split = RatioSplit(
data=feedback,
test_size=0.2,
exclude_unknowns=True,
verbose=True,
seed=123,
rating_threshold=0.5,
item_text=item_text_modality,
)
# Instantiate DMRL recommender
dmrl_recommender = cornac.models.dmrl.DMRL(
batch_size=4096,
epochs=20,
log_metrics=False,
learning_rate=0.01,
num_factors=2,
decay_r=0.5,
decay_c=0.01,
num_neg=3,
embedding_dim=100,
)
# Use Recall@300 for evaluations
rec_300 = cornac.metrics.Recall(k=300)
prec_30 = cornac.metrics.Precision(k=30)
# Put everything together into an experiment and run it
cornac.Experiment(
eval_method=ratio_split, models=[dmrl_recommender], metrics=[prec_30, rec_300]
).run()