forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlrppm_example.py
61 lines (54 loc) · 1.82 KB
/
lrppm_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Learn to Rank user Preferences based on Phrase-level sentiment analysis across Multiple categories (LRPPM)"""
from cornac.datasets import amazon_toy
from cornac.data import SentimentModality
from cornac.eval_methods import RatioSplit
from cornac.metrics import AUC, NDCG, RMSE
from cornac.models import LRPPM
from cornac import Experiment
# Load rating and sentiment information
data = amazon_toy.load_feedback()
sentiment = amazon_toy.load_sentiment()
# Instantiate a SentimentModality, it makes it convenient to work with sentiment information
md = SentimentModality(data=sentiment)
# Define an evaluation method to split feedback into train and test sets
eval_method = RatioSplit(
data,
test_size=0.2,
rating_threshold=1.0,
sentiment=md,
exclude_unknowns=True,
verbose=True,
seed=123,
)
# Instantiate the model
mter = LRPPM(
n_factors=8,
n_ranking_samples=1000,
n_samples=200,
ld=1.0,
reg=0.01,
max_iter=10000,
lr=0.1,
verbose=True,
seed=123,
)
# Instantiate and run an experiment
Experiment(
eval_method=eval_method,
models=[mter],
metrics=[RMSE(), AUC(), NDCG(k=50)],
).run()