-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_policy.py
160 lines (135 loc) · 6 KB
/
train_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os, sys
import argparse
from pathlib import Path
from functools import partial
import numpy as np
import tensorflow as tf
from OpenGL import GLU
import gym, roboschool
from tqdm import tqdm
import moviepy.editor as mpy
from roboschool import RoboschoolReacher as RR
from nets.rwd_model import OrderBasedRewardFunc, _reacher_arch
#TODO: Managing this ugly..sh!
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)),'baselines'))
from baselines import bench, logger
from baselines.common import set_global_seeds
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.common.vec_env.vec_normalize import VecNormalize
from baselines.ppo2 import ppo2
from baselines.ppo2.policies import MlpPolicy
def train(env_id, num_timesteps, seed, goal, reward_type, reward_model):
# Load Reward Function
if reward_type == 'inferred':
with tf.Graph().as_default() as g:
with tf.variable_scope('train'):
with tf.variable_scope('params') as params:
pass
net = OrderBasedRewardFunc(
tf.placeholder(tf.float32,[2,64,64,3]),
tf.placeholder(tf.float32,[2,64,64,3]),
tf.placeholder(tf.bool,[2]),
partial(_reacher_arch,32), # embedding vector length
None,
None,
None,
params,
is_training=False
)
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
sess = tf.Session(graph=g,config=config)
net.load(g,sess,reward_model)
# Run PPO
ncpu = 1
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=ncpu,
inter_op_parallelism_threads=ncpu)
config.gpu_options.allow_growth = True
tf.Session(config=config).__enter__()
def make_env():
env = gym.make(env_id)
env.unwrapped.set_goals( [goal] )
env.unwrapped.set_targets_color( RR.COLOR_SET[:4] )
if reward_type == 'inferred':
# 4-1. Shuffle And Learn Reward
env.unwrapped.set_tf_reward_fn(net.reward_fn)
env = bench.Monitor(env, logger.get_dir())
return env
env = DummyVecEnv([make_env])
env = VecNormalize(env)
#env = VecNormalize(env,False,False) #normalize observ, normalize ret.
set_global_seeds(seed)
ppo2.learn(policy=MlpPolicy, env=env, nsteps=2048, nminibatches=32,
lam=0.95, gamma=0.99, noptepochs=10, log_interval=1,
ent_coef=0.0,
lr=3e-4,
cliprange=0.2,
total_timesteps=num_timesteps,
save_interval=10)
def test(env_id, seed, log_dir, model, goal=0, num_iter=100, video_path=None):
model_path = str(Path(log_dir)/'checkpoints'/('%05d'%model))
with tf.Graph().as_default():
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
config.gpu_options.allow_growth = True
sess = tf.InteractiveSession(config=config)
def make_env():
env = gym.make(env_id)
env.unwrapped.set_goals( [goal] )
env.unwrapped.set_targets_color( RR.COLOR_SET[:4] )
return env
set_global_seeds(seed)
# Make Env
env = DummyVecEnv([make_env],render=False)
env = VecNormalize(env,True,True)
env.load(model_path)
# Make Model
model = ppo2.Model(policy=MlpPolicy, ob_space=env.observation_space, ac_space=env.action_space,
nbatch_act=1, nbatch_train=1,nsteps=1,ent_coef=0.0,vf_coef=0.5,max_grad_norm=0.5)
model.load(model_path)
def _gen_traj():
obs = env.reset()
states,actions,images,done = [obs[0]], [], [], [False]
while not done[0]:
a, _, _, _ = model.step(obs,model.initial_state,done)
obs, r, done, info = env.step(a)
states.append(obs[0])
actions.append(a[0])
images.append(info[0]['img'])
return states, actions, images
if video_path is not None:
video_path = Path(video_path)
video_path.mkdir(parents=True,exist_ok=True)
success = 0
for it in tqdm(range(num_iter)):
states, actions, images = _gen_traj()
if( len(states) < 150):
success+=1
if video_path is not None:
clip = mpy.ImageSequenceClip(list(images),fps=60)
clip.write_videofile(str(video_path/('video_%d.mp4'%it)),verbose=False,ffmpeg_params=['-y'],progress_bar=False)
print('Success Rate: %f(%d/%d)'%(1.*success/num_iter,success,num_iter))
sess.close()
return success
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--log_dir', required=True)
parser.add_argument('--env', help='environment ID', default='RoboschoolReacher-v1')
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser.add_argument('--num-timesteps', type=int, default=int(1e6))
parser.add_argument('--goal', default=0, choices=[0,1])
parser.add_argument('--reward_type', default='inferred', choices=['gt','inferred'])
parser.add_argument('--reward_model', default='')
# For Eval
parser.add_argument('--eval',action='store_true')
parser.add_argument('--model',type=int,default=480)
parser.add_argument('--num_iter',type=int,default=100)
parser.add_argument('--video_path',default=None)
args = parser.parse_args()
if not args.eval:
logger.configure(args.log_dir)
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed, goal=args.goal, reward_type=args.reward_type, reward_model=args.reward_model)
else:
test(args.env, args.seed, args.log_dir, args.model, args.goal, args.num_iter, args.video_path)