-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathht3_solver_run_script.py
211 lines (181 loc) · 7.61 KB
/
ht3_solver_run_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# -*- coding: utf-8 -*-
"""
@author: Hugh Bird
@copyright Copyright 2017, Hugh Bird
@lisence: MIT
@status: alpha
"""
import ht3_solver as ht3s
import ElemMesh as em
import Elements as Elements
import numpy as np
import pickle
from ScriptTools import *
# Convenience...
run_id = "TEST_ID"
print("Run id is "+str(run_id))
## MESH INPUTS
mesh = em.ElemMesh()
# WE CAN BUILD A MESH FROM SCRATCH:
# 1x3 Mesh:
# ---------------
# | | | |
# | | | |
# ---------------
#mesh.nodes[0] = np.array([0.0, 0.0, 0.0])
#mesh.nodes[1] = np.array([1.0, 0.0, 0.0])
#mesh.nodes[2] = np.array([2.0, 0.0, 0.0])
#mesh.nodes[3] = np.array([3.0, 0.0, 0.0])
#mesh.nodes[4] = np.array([0.0, 1.0, 0.0])
#mesh.nodes[5] = np.array([1.0, 1.0, 0.0])
#mesh.nodes[6] = np.array([2.0, 1.0, 0.0])
#mesh.nodes[7] = np.array([3.0, 1.0, 0.0])
#
#mesh.elems[0] = Elements.ElemQuad4(mesh.nodes, (0,1,5,4))
#mesh.elems[1] = Elements.ElemQuad4(mesh.nodes, (1,2,6,5))
#mesh.elems[2] = Elements.ElemQuad4(mesh.nodes, (2,3,7,6))
#
#mesh.nodes_in_physical_groups = {}
#mesh.nodes_in_physical_groups[0] = [0,4]
#mesh.nodes_in_physical_groups[1] = [3,7]
#mesh.nodes_in_physical_groups[2] = [1,2,3,4,5,6,7]
#mesh.nodes_in_physical_groups[3] = [0,4,3,7]
#mesh.phys_group_names = {0:"Left",
# 1:"Right",
# 2:"Volume",
# 3:"Boundary"}
# OR IMPORT OUR MESH FROM A .msh FILE:
mesh.build_from_gmsh("./RMesh/MESH_FILE.msh")
mesh.print_elem_counts()
mesh.remove_line_elems() # Remove line elements on boundary
mesh.print_elem_counts()
mesh.calc_elems_in_physgrps() # [Boilerplate]
mesh.print_group_elem_counts()
mesh.elem_quad9_to_quad8() # Currently, quad9s don't work. This converts to quad8.
# ARE WE USING ENRICHMENT? IF YES:
# We need a mesh to project results onto:
outmesh = em.ElemMesh() # Mesh object
outmesh.build_from_gmsh("./RMesh/MESH_FILE_2.msh") # Import mesh from .msh
outmesh.print_elem_counts() #(Boilerplate)
outmesh.remove_line_elems() # Again, remove line elements.
outmesh.print_elem_counts()
outmesh.calc_elems_in_physgrps()
outmesh.print_group_elem_counts()
# DEFINE OUR ENRICHMENT:
# Enrichment needs to define an enrichment function and its partial derivatives.
# We can make a function generate these functions for similar enrichments.
def gen_tanhkx2d(k, dim, scalar):
offset = 1.0 - np.tanh(2*k)
f = lambda x:np.tanh(scalar*k*x[dim]+k) + offset - 1.0
f_prime0 = lambda x: scalar * k * (1.0/np.cosh(scalar*k*x[dim] + k))**2
f_prime1 = lambda x: 0
if dim == 0:
f_prime = lambda x: np.array((f_prime0(x), f_prime1(x)))
if dim == 1:
f_prime = lambda x: np.array((f_prime1(x), f_prime0(x)))
return (f, f_prime)
# We can also write a function to apply multiple enrichments to a single element:
def enrich_me(group, dim, pm, k_list, ids_start):
if dim == 0:
quadrature = (70, 1) # Quadratures is not symettric.
else:
quadrature = (1, 70)
for k in k_list:
print("SCRIPT:\tAdding enrichment to quad with id "+ str(ids_start))
enr = gen_tanhkx2d(k, dim, pm)
mesh.enrich_elems(group, enr[0],
enr[1],
quadrature,
Elements.ElemQuadBase,
ids_start)
ids_start += 1
# Enrichment IDs - Enrichments on the same node that share the same id will
# share a degree of freedom.
k_list = [2, 3, 6, 12, 24]
enrich_me("Bottom", 1, 1, k_list, 100)
enrich_me("Right", 1, -1, k_list, 100)
enrich_me("Arc", 0, -1, k_list, 200)
# END DEFINE ENRICHEMENT
## CREATE A NEW SOLVER OBJECT
solver = ht3s.ht3_solver(mesh)
# solver.norm_path = "./ROut/ht3_"+run_id+"_norm.csv" # If norm output is desired, this must be defined.
# solver.export_mesh = outmesh # If XFEM, an output mesh must be defined.
solver.save_path = "./ROut/ht3_"+run_id+ "_" # A path to save the solution .vtus must be defined.
mesh.export_to_vtk(solver.save_path+"mesh") # It is useful to save the input mesh as a VTU. Good for debugging.
# We can specify that saving and norm calculation is only done on specific steps:
# def norm_reporting_rule(step, dt):
# if step % np.floor(5e-6 / dt) == 0:
# return True
# else:
# return False
# solver.norm_saving_rule = norm_reporting_rule
def saving_rule(step, dt): return False
solver.save_rule = saving_rule
# We can use a predfined solution:
#f(x,y,t) = exp(- x^c kt) + exp(- y^c kt)
# c = 1
# k = 1
# solution = lambda x, t: np.exp(-1 * x[0]**c *k*t) + np.exp(-1 * x[1]**c *k*t) # The solution
# oneD1 = lambda x, t: -1 * c * k * t * x**(c-1) * np.exp(-1 * x**c *k *t) # Partial deriv 1
# def oneD2(x, t): # Partial deriv 2
# a = c*k*t*np.exp(-x**c * k*t)
# b = c*k*t*x**(2*c-2)
# d = (c - 1) * x**(c-2)
# return a * ( b - d)
# laplacian = lambda x, t: oneD2(x[0], t) + oneD2(x[1], t) # Laplacian
# def norm_grad(x, t, n): # Grad in given dir.
# dfdx = np.array((oneD1(x[0], t), oneD1(x[1], t)))
# return np.dot(n, dfdx)
# dTdt = lambda x, t: -k * (x[0]**c * np.exp(-k * t*x[0]**c) + \ # DT / Dt
# x[1]**c * np.exp(-k * t*x[1]**c))
# solver.redef_F_laplacian = lambda x, y, t: laplacian((x,y), t)
# solver.redef_f_norm_grad = lambda x, y, t, n: norm_grad((x,y), t, n)
# solver.redef_dTdt = lambda x, y, t: dTdt((x, y), t)
# solver.expected_solution = solution
# SIMULATION CONSTANTS
# Some parts are optical for SP1 radiation approximation included in code.
# If len(fq_list) == 0, no radiation will be modelled. Radiation consts like diff scale
# must still be defined however - assertions will (should) occur otherwise.
#mesh
#time
solver.zero_timings()
solver.d_T = 1e-7
solver.max_T = 1.01e-5
# simulation setup optical
solver.v0_frequency = 2.933e13
solver.fq_list = []#[3.422, 3.733, 4.563, 5.133, 5.866, 6.844, 102.671, 10e6]
# simulation setup temperatures
solver.background_temperature = 300.00
solver.initial_temperature = 1000.0
solver.diff_scale = 0.5
#material properties
#optical
solver.absorb_coeffs = []#[7136.00, 576.32, 276.98, 27.98, 15.45, 7.70, 0.50, 0.40]
solver.alpha = 0.92 #(Hemisperic emssivity)
solver.refr_idx_vol = 1.46
solver.refr_idx_background = 1.00
solver.r1 = 0.0
solver.r2 = 0.0
#conductive
solver.density = 2514.8
solver.heat_capacity = 1239.6
solver.thermal_conductivity = 1.672
solver.convect_coeff = 1.0
# Set solver running.
# Solver can be called with initial solution for FEM problems.
# solver.run(initial= lambda x,y: solution(np.array((x,y)),solver.current_T))
solver.run()
# Solver runs till it ends.
# FEM: a solution can be saved (IE Mesh + degrees of freedom). Not possible currently with XFEM.
# f = open("ROut/SOLUTION.pkl", 'wb')
# ts = ht3s.saved_solver(solver)
# pickle.dump(ts, f)
# f.close()
# FEM OR XFEM: a reference solution can be opened and compared to (Ie calc rel error L2 Norms)
f = open("../v0.6_FEM/ROut/SOLUTION.pkl", 'rb')
fem_ref = pickle.load(f).return_solver()
f.close()
mapping = solver.compare_solutions(fem_ref, 1e-7)
solver.compare_solutions(fem_ref, 2e-7, mesh_mapping = mapping)
solver.compare_solutions(fem_ref, 4e-7, mesh_mapping = mapping)
print("DONE!")