-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathrun_example.py
63 lines (53 loc) · 2.48 KB
/
run_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
from options.test_options import TestOptions
from models import create_model
from util.util import tensor2labelim, tensor2confidencemap
from models.sne_model import SNE
import torchvision.transforms as transforms
import torch
import numpy as np
import cv2
class dataset():
def __init__(self):
self.num_labels = 2
if __name__ == '__main__':
opt = TestOptions().parse()
opt.num_threads = 1
opt.batch_size = 1
opt.serial_batches = True # no shuffle
opt.isTrain = False
example_dataset = dataset()
model = create_model(opt, example_dataset)
model.setup(opt)
model.eval()
# if you want to use your own data, please modify rgb_image, depth_image, camParam and use_size correspondingly.
rgb_image = cv2.cvtColor(cv2.imread(os.path.join('examples', 'rgb.png')), cv2.COLOR_BGR2RGB)
depth_image = cv2.imread(os.path.join('examples', 'depth_u16.png'), cv2.IMREAD_ANYDEPTH)
oriHeight, oriWidth, _ = rgb_image.shape
oriSize = (oriWidth, oriHeight)
# resize image to enable sizes divide 32
use_size = (1248, 384)
rgb_image = cv2.resize(rgb_image, use_size)
rgb_image = rgb_image.astype(np.float32) / 255
# compute normal using SNE
sne_model = SNE()
camParam = torch.tensor([[7.215377e+02, 0.000000e+00, 6.095593e+02],
[0.000000e+00, 7.215377e+02, 1.728540e+02],
[0.000000e+00, 0.000000e+00, 1.000000e+00]], dtype=torch.float32) # camera parameters
normal = sne_model(torch.tensor(depth_image.astype(np.float32)/1000), camParam)
normal_image = normal.cpu().numpy()
normal_image = np.transpose(normal_image, [1, 2, 0])
cv2.imwrite(os.path.join('examples', 'normal.png'), cv2.cvtColor(255*(1+normal_image)/2, cv2.COLOR_RGB2BGR))
normal_image = cv2.resize(normal_image, use_size)
rgb_image = transforms.ToTensor()(rgb_image).unsqueeze(dim=0)
normal_image = transforms.ToTensor()(normal_image).unsqueeze(dim=0)
with torch.no_grad():
pred = model.netRoadSeg(rgb_image, normal_image)
palet_file = 'datasets/palette.txt'
impalette = list(np.genfromtxt(palet_file, dtype=np.uint8).reshape(3*256))
pred_img = tensor2labelim(pred, impalette)
pred_img = cv2.resize(pred_img, oriSize)
prob_map = tensor2confidencemap(pred)
prob_map = cv2.resize(prob_map, oriSize)
cv2.imwrite(os.path.join('examples', 'pred.png'), pred_img)
cv2.imwrite(os.path.join('examples', 'prob_map.png'), prob_map)