-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
234 lines (221 loc) · 11.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
MICCAI 2023 Orientation-Shared Convolution Representation for CT Metal Artifact Learning
https://drive.google.com/file/d/1SseWsZXe3_DFXVPOWUeNRLndxwhJ6XHc/view
TMI 2023 OSCNet: Orientation-Shared Convolutional Network for CT Metal Artifact Learning
https://drive.google.com/file/d/1ach658FTosbD7h3BHopZM6oj0O-890Uj/view
@author: hazelhwang (hongwang9209@hotmail.com)
"""
from __future__ import print_function
import argparse
import os
import random
import torch
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import time
import numpy as np
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from Dataset import MARTrainDataset, MARValDataset
from math import ceil
from utils.utils import batch_PSNR
from utils.SSIM import SSIM
from utils import utils_image
from network.oscnet import OSCNet
from network.oscnetplus import OSCNetplus
parser = argparse.ArgumentParser()
parser.add_argument("--data_path", type=str, default="data/train/", help='txt path to training data')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--batchSize', type=int, default=16, help='input batch size')
parser.add_argument('--patchSize', type=int, default=64, help='the height / width of the input image to network')
parser.add_argument('--niter', type=int, default=200, help='total number of training epochs')
parser.add_argument('--batchnum', type=int, default=4000, help='the number of batch')
#for model_selection
parser.add_argument('--model', type=str, default="osc", help='osc or oscplus')
#for filter parameterization
parser.add_argument('--padding', type=int, default=4, help='the number of padding during convolution')
parser.add_argument('--inP', type=int, default=5, help='control the basis for filter parameterization')
parser.add_argument('--sizeP', type=int, default=9, help='control the basis for filter parameterization')
parser.add_argument('--ifini', type=float, default=1, help='indicator for filter parameterization')
parser.add_argument('--cdiv', type=float, default=1, help='controlling the updating rate of filter for oscnetplus. For oscnet, it is fixed as 1. For OSCnnn') # oscnet: default as 1
#for network and dictionary model
parser.add_argument('--num_M', type=int, default=4, help='the number of feature maps at every rotation angle')
parser.add_argument('--num_Q', type=int, default=32, help='the number of channel concatenation') #refer to https://github.com/hongwang01/DICDNet for the channel concatenation strategy
parser.add_argument('--num_rot', type=int, default=8, help='the number of rotation angles')
parser.add_argument('--S', type=int, default=10, help='Stage number S')
parser.add_argument('--T', type=int, default=3, help='Resblocks number in each ProxNet')
parser.add_argument('--etaM', type=float, default=1, help='stepsize for updating M')
parser.add_argument('--etaX', type=float, default=5, help='stepsize for updating B')
#for training
parser.add_argument('--resume', type=int, default=0, help='continue to train from epoch')
parser.add_argument("--milestone", type=int, default=[30,60,90,120,150,180], nargs='+',help="When to decay learning rate")
parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate')
parser.add_argument("--use_gpu", type=bool, default=True, help='use GPU or not')
parser.add_argument("--gpu_id", type=str, default="0", help='GPU id')
parser.add_argument('--log_dir', default='logs/', help='tensorboard logs')
parser.add_argument('--model_dir', default='models/', help='saving model')
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('--Xl2', type=float, default=1, help='loss weights for CT image -l2 norm')
parser.add_argument('--Xl1', type=float, default=5e-4, help='loss weights for CT image-l1 norm')
parser.add_argument('--Al1', type=float, default=5e-4, help='loss weights for artifact layer-l1 norm')
opt = parser.parse_args()
if opt.use_gpu:
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_id
_modes = ['train', 'val']
metric = SSIM()
# create path
try:
os.makedirs(opt.log_dir)
except OSError:
pass
try:
os.makedirs(opt.model_dir)
except OSError:
pass
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
cudnn.benchmark = True
def train_model(net, optimizer, lr_scheduler, datasets):
batch_size = {'train': opt.batchSize, 'val': 1}
data_loader = {phase: DataLoader(datasets[phase], batch_size=batch_size[phase], shuffle=True,
num_workers=int(opt.workers), pin_memory=True) for phase in _modes}
num_data = {phase: len(datasets[phase]) for phase in _modes}
num_iter_epoch = {phase: ceil(num_data[phase] / batch_size[phase]) for phase in _modes}
writer = SummaryWriter(opt.log_dir)
step = 0
for epoch in range(opt.resume, opt.niter):
mse_per_epoch = {x: 0 for x in _modes}
tic = time.time()
# train stage
lr = optimizer.param_groups[0]['lr']
phase = 'train'
optimizer.zero_grad()
for ii, data in enumerate(data_loader[phase]):
Xma, GT, XLI, mask = [x.cuda() for x in data]
net.train()
optimizer.zero_grad()
X0, ListX, ListA = net(Xma, XLI, mask)
loss_l2Xt = 0
loss_l1Xt = 0
loss_l1At = 0
newAgt = mask*(Xma - GT)
newXgt = mask * GT
for j in range(opt.S):
loss_l2Xt = loss_l2Xt + 0.1 * F.mse_loss(ListX[j]*mask, newXgt)
loss_l1Xt = loss_l1Xt + 0.1 * torch.sum(torch.abs(ListX[j]*mask - newXgt))
loss_l1At = loss_l1At + 0.1 * torch.sum(torch.abs(mask *ListA[j]-newAgt))
loss_l1Xf = torch.sum(torch.abs((ListX[-1]*mask - newXgt)))
loss_l1Af = torch.sum(torch.abs(mask *ListA[-1]-newAgt))
loss_l2Xf = F.mse_loss(ListX[-1]*mask,newXgt)
loss_l1X0= 0.1 * torch.sum(torch.abs(X0 * mask - newXgt))
loss_l2X0 = 0.1 * F.mse_loss(X0 * mask, newXgt)
loss_l2X = loss_l2Xt + loss_l2Xf + loss_l2X0
loss_l1X = loss_l1Xt + loss_l1Xf + loss_l1X0
loss_l1A = loss_l1At + loss_l1Af
loss = opt.Xl2 * loss_l2X + opt.Xl1* loss_l1X + opt.Al1 * loss_l1A
# back propagation
loss.backward()
optimizer.step()
mse_iter = loss.item()
mse_per_epoch[phase] += mse_iter
Xoutclip = torch.clamp(ListX[-1]/255.0,0,0.5)
Xgtclip = torch.clamp(GT/255.0, 0,0.5)
rmseu = torch.sqrt(torch.mean(((Xoutclip - Xgtclip) * mask) ** 2))
train_psnr = batch_PSNR(Xoutclip * mask, Xgtclip* mask, 0.5)
train_ssim = metric(Xoutclip / 0.5 * mask, Xgtclip/0.5 * mask)
if ii % 100 == 0:
template = '[Epoch:{:>2d}/{:<2d}] {:s}:{:0>5d}/{:0>5d}, Loss={:5.2e}, Lossl2X={:5.2e}, Lossl1X={:5.2e}, Lossl1A={:5.2e}, lr={:.2e}'
print(template.format(epoch + 1, opt.niter, phase, ii, num_iter_epoch[phase], mse_iter, loss_l2X, loss_l1X, loss_l1A, lr))
log_str = 'rmseu={:5.4f},psnr={:4.2f}, ssim= {:5.4f}'
print(log_str.format(rmseu.item(),train_psnr.item(), train_ssim.item()))
writer.add_scalar('Train Loss Iter', mse_iter, step)
step += 1
mse_per_epoch[phase] /= (ii + 1)
print('{:s}: Loss={:+.2e}'.format(phase, mse_per_epoch[phase]))
print('-' * 100)
# evaluation stage
net.eval()
psnr_per_epoch = 0
ssim_per_epoch = 0
phase = 'val'
for ii, data in enumerate(data_loader[phase]):
Xma, GT, XLI, mask = [x.cuda() for x in data]
with torch.set_grad_enabled(False):
X0, ListX, ListA = net(Xma, XLI, mask)
newXgt = mask * GT
Xoutclip = torch.clamp(ListX[-1]/255.0,0,0.5)
Xgtclip = torch.clamp(GT/255.0,0,0.5)
Out_img = utils_image.tensor2uint(Xoutclip/0.5)
B_img = utils_image.tensor2uint(Xgtclip/0.5)
psnr_iter = utils_image.calculate_psnr(Out_img * mask.data.squeeze().float().cpu().numpy(),
B_img * mask.data.squeeze().float().cpu().numpy())
psnr_per_epoch += psnr_iter
ssim_iter = utils_image.calculate_ssim(Out_img * mask.data.squeeze().float().cpu().numpy(),
B_img * mask.data.squeeze().float().cpu().numpy())
ssim_per_epoch += ssim_iter
ListX[-1].clamp_(0.0, 255.0)
mse_iter = F.mse_loss(mask *ListX[-1], newXgt)
mse_per_epoch[phase] += mse_iter
if ii % 1000 == 0:
log_str = '[Epoch:{:>2d}/{:<2d}] {:s}:{:0>3d}/{:0>3d}, mae={:.2e}, psnr={:4.2f}, ssim= {:5.4f}'
print(log_str.format(epoch + 1, opt.niter, phase, ii + 1, num_iter_epoch[phase], mse_iter, psnr_iter, ssim_iter))
psnr_per_epoch /= (ii + 1)
ssim_per_epoch /= (ii + 1)
mse_per_epoch[phase] /= (ii + 1)
print('{:s}: mse={:.3e}, PSNR={:4.2f}, ssim= {:5.4f}'.format(phase, mse_per_epoch[phase], psnr_per_epoch, ssim_per_epoch))
print('-' * 100)
# adjust the learning rate
lr_scheduler.step()
# save model
torch.save(net.state_dict(), os.path.join(opt.model_dir, 'net_latest.pt'))
if (epoch+1) % 20 == 0:
# save model
model_prefix = 'model_'
save_path_model = os.path.join(opt.model_dir, model_prefix + str(epoch + 1))
torch.save({
'epoch': epoch + 1,
'step': step + 1,
}, save_path_model)
torch.save(net.state_dict(), os.path.join(opt.model_dir, 'net_state_%d.pt' % (epoch+1)))
writer.add_scalars('MSE_epoch', mse_per_epoch, epoch + 1)
writer.add_scalar('val PSNR epoch', psnr_per_epoch, epoch + 1)
writer.add_scalar('val SSIM epoch', ssim_per_epoch, epoch + 1)
toc = time.time()
print('This epoch take time {:.2f}'.format(toc - tic))
writer.close()
print('Reach the maximal epochs! Finish training')
if __name__ == '__main__':
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print('Total number of parameters: %d' % num_params)
if "plus" not in opt.model:
net= OSCNet(opt).cuda()
else:
net= OSCNetplus(opt).cuda()
print_network(net)
optimizer = optim.Adam(net.parameters(), betas=(0.5, 0.999), lr=opt.lr)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=opt.milestone, gamma=0.5)
# from opt.resume continue to train
for _ in range(opt.resume):
scheduler.step()
if opt.resume:
net.eval()
checkpoint = torch.load(os.path.join(opt.model_dir, 'model_' + str(opt.resume)))
net.load_state_dict(torch.load(os.path.join(opt.model_dir, 'net_state_' + str(opt.resume) + '.pt')))
print('loaded checkpoints, epoch{:d}'.format(checkpoint['epoch']))
# load dataset
train_mask = np.load(os.path.join(opt.data_path, 'trainmask.npy'))
train_dataset = MARTrainDataset(opt.data_path, opt.patchSize, int(opt.batchSize * opt.batchnum), train_mask)
val_dataset = MARValDataset(opt.data_path, train_mask)
datasets = {'train': train_dataset, 'val': val_dataset}
# train model
train_model(net, optimizer, scheduler, datasets)