-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathGroupedNumericStats.ecl
327 lines (293 loc) · 9.8 KB
/
GroupedNumericStats.ecl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/**
* Compute various statistics of a numeric field within groups within a dataset.
* Sample code can be found at the end of the file.
*
* @param inFile The dataset to process; REQUIRED
* @param valueField The name of the numeric field to use for all
* calculations; this is not a STRING;
* REQUIRED
* @param groupingFieldsStr Comma-delimited STRING giving the fields
* in which to group the data for the purpose
* of calculating the median; cannot be an
* empty string; REQUIRED
* @param maxModes The maximum number of mode values to return;
* OPTIONAL, defaults to 5
*
* @return A new dataset that contains only the grouping fields and a
* set of numeric summaries for the values in that group. The
* summary includes:
*
* minimum
* maximum
* average
* median
* sum
* standard deviation
* modes (child dataset)
*
* Origin: https://github.com/hpccsystems-solutions-lab/Useful_ECL
*/
EXPORT GroupedNumericStats(inFile, valueField, groupingFieldsStr, maxModes = 5) := FUNCTIONMACRO
#UNIQUENAME(myGroupingFields);
#SET(myGroupingFields, TRIM(groupingFieldsStr, ALL));
#UNIQUENAME(leftGroupingFields);
#SET(leftGroupingFields, REGEXREPLACE('(^|,)', %'myGroupingFields'%, '$1LEFT.'));
#UNIQUENAME(ValueField_t);
LOCAL %ValueField_t% := TYPEOF(inFile.valueField);
#UNIQUENAME(slimFile);
LOCAL %slimFile% := TABLE(UNGROUP(inFile), {%myGroupingFields%, valueField});
#UNIQUENAME(ModeRec);
LOCAL %ModeRec% := RECORD
%ValueField_t% valueField;
UNSIGNED4 cnt;
END;
// Create the output dataset
#UNIQUENAME(ResultRec);
LOCAL %ResultRec% := RECORD
RECORDOF(%slimFile%) - [valueField];
%ValueField_t% min_value;
%ValueField_t% max_value;
%ValueField_t% ave_value;
REAL4 median_value;
%ValueField_t% sum_value;
%ValueField_t% std_dev_value;
DATASET(%ModeRec%) modes;
END;
#UNIQUENAME(DataRec);
#UNIQUENAME(hashValue)
LOCAL %DataRec% := RECORD
UNSIGNED8 %hashValue%;
RECORDOF(%slimFile%);
END;
// Assign a hash value for the group fields
#UNIQUENAME(myDataPlusHash);
LOCAL %myDataPlusHash% := PROJECT
(
%slimFile%,
TRANSFORM
(
%DataRec%,
SELF.%hashValue% := HASH64(%leftGroupingFields%),
SELF := LEFT
)
);
// Distribute the data based on the hash
#UNIQUENAME(distributedData);
LOCAL %distributedData% := DISTRIBUTE(%myDataPlusHash%, %hashValue%);
// Create a reduced dataset that contains only the unique values and the
// number of times those values appear
#UNIQUENAME(groupedCards);
LOCAL %groupedCards% := TABLE
(
%distributedData%,
{
%hashValue%,
valueField,
UNSIGNED6 cnt := COUNT(GROUP),
UNSIGNED6 valueEndPos := 0 // fill in later
},
%hashValue%, valueField,
LOCAL
);
// Determine the position of the last record in the original dataset that
// contains a particular value within the group
#UNIQUENAME(groupedCards2);
LOCAL %groupedCards2% := ITERATE
(
SORT(%groupedCards%, %hashValue%, valueField, LOCAL),
TRANSFORM
(
RECORDOF(LEFT),
SELF.valueEndPos := IF(LEFT.%hashValue% = RIGHT.%hashValue%, LEFT.valueEndPos + RIGHT.cnt, RIGHT.cnt),
SELF := RIGHT
),
LOCAL
);
// Find the number of records in each group
#UNIQUENAME(groupRecCounts);
LOCAL %groupRecCounts% := TABLE
(
%groupedCards2%,
{
%hashValue%,
UNSIGNED2 recCount := MAX(GROUP, valueEndPos)
},
%hashValue%,
LOCAL
);
// Build a median info record
#UNIQUENAME(GroupInfoRec);
LOCAL %GroupInfoRec% := RECORD
RECORDOF(%groupRecCounts%);
UNSIGNED4 medianPos1;
UNSIGNED4 medianPos2;
%ValueField_t% medianVal1;
%ValueField_t% medianVal2;
%ValueField_t% medianVal;
END;
// Compute the median positions in each group
#UNIQUENAME(groupInfo);
LOCAL %groupInfo% := PROJECT
(
%groupRecCounts%,
TRANSFORM
(
%GroupInfoRec%,
wholeHasEvenNumberOfElements := (LEFT.recCount % 2) = 0;
SELF.medianPos1 := IF
(
LEFT.recCount > 2,
LEFT.recCount DIV 2 + IF(wholeHasEvenNumberOfElements, 0, 1),
1
),
SELF.medianPos2 := IF
(
LEFT.recCount > 2,
SELF.medianPos1 + IF(wholeHasEvenNumberOfElements, 1, 0),
LEFT.recCount
),
SELF := LEFT,
SELF := []
),
LOCAL
);
#UNIQUENAME(sequencedData);
LOCAL %sequencedData% := SORT(%groupedCards2%, %hashValue%, valueEndPos, LOCAL);
// Extract values of median positions
#UNIQUENAME(j10);
LOCAL %j10% := JOIN
(
%groupInfo%,
%sequencedData%,
LEFT.%hashValue% = RIGHT.%hashValue% AND RIGHT.valueEndPos >= LEFT.medianPos1,
TRANSFORM
(
%GroupInfoRec%,
SELF.medianVal1 := RIGHT.valueField,
SELF := LEFT
),
LOCAL, NOSORT, KEEP(1)
);
#UNIQUENAME(j20);
LOCAL %j20% := JOIN
(
%j10%,
%sequencedData%,
LEFT.%hashValue% = RIGHT.%hashValue% AND RIGHT.valueEndPos >= LEFT.medianPos2,
TRANSFORM
(
%GroupInfoRec%,
SELF.medianVal2 := RIGHT.valueField,
SELF := LEFT
),
LOCAL, NOSORT, KEEP(1)
);
// Compute median values
#UNIQUENAME(finalGroupInfo);
LOCAL %finalGroupInfo% := PROJECT
(
%j20%,
TRANSFORM
(
%GroupInfoRec%,
SELF.medianVal := AVE(LEFT.medianVal1, LEFT.medianVal2),
SELF := LEFT
),
LOCAL
);
// Group for mode determination
#UNIQUENAME(groupedData);
LOCAL %groupedData% := GROUP(SORT(%groupedCards%, %hashValue%, LOCAL), %hashValue%, LOCAL);
#UNIQUENAME(topGroupedData);
LOCAL %topGroupedData% := TOPN(%groupedData%, (UNSIGNED1)maxModes, -cnt);
#UNIQUENAME(topRecord);
LOCAL %topRecord% := TOPN(%topGroupedData%, 1, -cnt);
#UNIQUENAME(modeValues);
LOCAL %modeValues% := JOIN
(
UNGROUP(%topGroupedData%),
UNGROUP(%topRecord%),
LEFT.%hashValue% = RIGHT.%hashValue% AND LEFT.cnt = RIGHT.cnt,
TRANSFORM(LEFT),
LOCAL
);
// Easy stuff done in one TABLE call
#UNIQUENAME(finalPrep);
LOCAL %finalPrep% := TABLE
(
%distributedData%,
{
%myGroupingFields%,
%hashValue%,
%ValueField_t% min_value := MIN(GROUP, valueField),
%ValueField_t% max_value := MAX(GROUP, valueField),
%ValueField_t% ave_value := AVE(GROUP, valueField),
%ValueField_t% sum_value := SUM(GROUP, valueField),
%ValueField_t% std_dev_value := SQRT(VARIANCE(GROUP, valueField))
},
%myGroupingFields%, %hashValue%,
LOCAL
);
// Start combining results
#UNIQUENAME(final10);
LOCAL %final10% := JOIN
(
%finalPrep%,
%finalGroupInfo%,
LEFT.%hashValue% = RIGHT.%hashValue%,
TRANSFORM
(
{
UNSIGNED8 %hashValue%,
%ResultRec%,
},
SELF.median_value := RIGHT.medianVal,
SELF := LEFT,
SELF := []
),
LOCAL, LEFT OUTER
);
#UNIQUENAME(final20);
LOCAL %final20% := DENORMALIZE
(
%final10%,
%modeValues%,
LEFT.%hashValue% = RIGHT.%hashValue%,
GROUP,
TRANSFORM
(
RECORDOF(LEFT),
SELF.modes := PROJECT(ROWS(RIGHT), TRANSFORM(%ModeRec%, SELF.valueField := LEFT.v, SELF.cnt := LEFT.cnt)),
SELF := LEFT
),
LOCAL, LEFT OUTER
);
#UNIQUENAME(finalResults);
LOCAL %finalResults% := %final20%;
RETURN PROJECT(%finalResults%, %ResultRec%);
ENDMACRO;
/******************************************************************************
DataRec := RECORD
UNSIGNED1 g;
UNSIGNED2 v;
END;
ds0 := DATASET
(
[
{1, 45},
{1, 62},
{1, 45},
{1, 3},
{1, 56},
{2, 46},
{2, 121},
{2, 47},
{2, 299},
{2, 67}
],
DataRec
);
ds := NOFOLD(ds0);
res := GroupedNumericStats(ds, v, 'g', maxModes := 2);
OUTPUT(res);
*/