-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathutils.py
632 lines (537 loc) · 22.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import io
import os
import csv
import math
import time
import json
import thop
import torch
import datetime
import numpy as np
import torch.distributed as dist
from pathlib import Path
from torch._six import inf
import torch.nn.functional as F
from timm.utils import get_state_dict
from timm.models import create_model
from collections import OrderedDict
from pytorch_msssim import ms_ssim, ssim
from collections import defaultdict, deque
from timm.loss import LabelSmoothingCrossEntropy
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import classification_report, accuracy_score, f1_score
## Including pakages
def sel_criterion(args):
criterion = torch.nn.CrossEntropyLoss()
print("criterion for classification = %s" % (str(criterion)))
return criterion
def get_model(args):
print(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=False,
drop_path_rate=args.drop_path,
drop_block_rate=None,
)
# Model info logging
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('=> Number of params: {} M'.format(n_parameters / 1e6))
return model
def load_checkpoint(model,args):
checkpoint = torch.load(args.resume, map_location='cpu')
print("Load ckpt from the place")
checkpoint_model = None
for model_key in args.model_key.split('|'):
if model_key in checkpoint:
checkpoint_model = checkpoint[model_key]
print("Load state_dict by model_key = %s" % model_key)
break
if checkpoint_model is None:
checkpoint_model = checkpoint
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
all_keys = list(checkpoint_model.keys())
new_dict = OrderedDict()
for key in all_keys:
if key.startswith('encoder.'):
new_dict['img_'+key] = checkpoint_model[key]
# elif key.startswith('img_encoder.blocks.3'):
# new_dict['img_encoder.blocks_cas.0'+key[20:]] = checkpoint_model[key]
# elif key.startswith('img_encoder.blocks.3'):
# new_dict['img_encoder.blocks_cas.1'+key[20:]] = checkpoint_model[key]
else:
new_dict[key] = checkpoint_model[key]
checkpoint_model = new_dict
return checkpoint_model
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def _load_checkpoint_for_ema(model_ema, checkpoint):
"""
Workaround for ModelEma._load_checkpoint to accept an already-loaded object
"""
mem_file = io.BytesIO()
torch.save(checkpoint, mem_file)
mem_file.seek(0)
model_ema._load_checkpoint(mem_file)
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def init_distributed_mode(args):
if args.dist_on_itp:
args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
os.environ['LOCAL_RANK'] = str(args.gpu)
os.environ['RANK'] = str(args.rank)
os.environ['WORLD_SIZE'] = str(args.world_size)
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
else:
print('Not using distributed mode')
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}, gpu {}'.format(
args.rank, args.dist_url, args.gpu), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"):
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(
prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
load(model, prefix=prefix)
warn_missing_keys = []
ignore_missing_keys = []
for key in missing_keys:
keep_flag = True
for ignore_key in ignore_missing.split('|'):
if ignore_key in key:
keep_flag = False
break
if keep_flag:
warn_missing_keys.append(key)
else:
ignore_missing_keys.append(key)
missing_keys = warn_missing_keys
if len(missing_keys) > 0:
print("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
print("Weights from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(ignore_missing_keys) > 0:
print("Ignored weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, ignore_missing_keys))
if len(error_msgs) > 0:
print('\n'.join(error_msgs))
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = get_grad_norm_(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
return total_norm
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0,
start_warmup_value=0, warmup_steps=-1):
warmup_schedule = np.array([])
warmup_iters = warmup_epochs * niter_per_ep
if warmup_steps > 0:
warmup_iters = warmup_steps
print("Set warmup steps = %d" % warmup_iters)
if warmup_epochs > 0:
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
iters = np.arange(epochs * niter_per_ep - warmup_iters)
schedule = np.array(
[final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters])
schedule = np.concatenate((warmup_schedule, schedule))
assert len(schedule) == epochs * niter_per_ep
return schedule
def path_exists_make(path):
if os.path.exists(path):
pass
else:
os.makedirs(path)
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None):
output_dir = Path(args.output_dir+'/ckpt_'+args.train_type)
path_exists_make(output_dir)
epoch_name = str(epoch)
if loss_scaler is not None:
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)]
for checkpoint_path in checkpoint_paths:
to_save = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'scaler': loss_scaler.state_dict(),
'args': args,
}
if model_ema is not None:
to_save['model_ema'] = get_state_dict(model_ema)
save_on_master(to_save, checkpoint_path)
else:
client_state = {'epoch': epoch}
if model_ema is not None:
client_state['model_ema'] = get_state_dict(model_ema)
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state)
def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None):
output_dir = Path(args.output_dir)
if loss_scaler is not None:
# torch.amp
if args.auto_resume and len(args.resume) == 0:
import glob
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth'))
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
print("Auto resume checkpoint: %s" % args.resume)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if hasattr(args, 'model_ema') and args.model_ema:
_load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & sched!")
else:
# deepspeed, only support '--auto_resume'.
if args.auto_resume:
import glob
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*'))
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt)
print("Auto resume checkpoint: %d" % latest_ckpt)
_, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt)
args.start_epoch = client_states['epoch'] + 1
if model_ema is not None:
if args.model_ema:
_load_checkpoint_for_ema(model_ema, client_states['model_ema'])
def tensor2cuda(tensor):
if torch.cuda.is_available():
tensor = tensor.cuda()
return tensor
def create_ds_config(args):
args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json")
with open(args.deepspeed_config, mode="w") as writer:
ds_config = {
"train_batch_size": args.batch_size * args.update_freq * get_world_size(),
"train_micro_batch_size_per_gpu": args.batch_size,
"steps_per_print": 1000,
"optimizer": {
"type": "Adam",
"adam_w_mode": True,
"params": {
"lr": args.lr,
"weight_decay": args.weight_decay,
"bias_correction": True,
"betas": [
0.9,
0.999
],
"eps": 1e-8
}
},
"fp16": {
"enabled": True,
"loss_scale": 0,
"initial_scale_power": 7,
"loss_scale_window": 128
}
}
writer.write(json.dumps(ds_config, indent=2))
def batch_index_select(x, idx):
if len(x.size()) == 3:
B, N, C = x.size()
N_new = idx.size(1)
offset = torch.arange(B, dtype=torch.long, device=x.device).view(B, 1) * N
idx = idx + offset
out = x.reshape(B*N, C)[idx.reshape(-1)].reshape(B, N_new, C)
return out
elif len(x.size()) == 2:
B, N = x.size()
N_new = idx.size(1)
offset = torch.arange(B, dtype=torch.long, device=x.device).view(B, 1) * N
idx = idx + offset
out = x.reshape(B*N)[idx.reshape(-1)].reshape(B, N_new)
return out
else:
raise NotImplementedError
def psnr(img1, img2):
mse = torch.mean((img1 - img2) ** 2.0, dtype=torch.float32)
if mse == 0:
return torch.tensor([100.0])
PIXEL_MAX = 255.0
return 20 * torch.log10(PIXEL_MAX / torch.sqrt(mse))
def get_imagenet_list(path):
fns = []
with open(path) as csvfile:
reader = csv.reader(csvfile)
for row in reader:
fns.append(row[0])
return fns
def complex_sig(shape, device):
sig_real = torch.randn(*shape)
sig_imag = torch.randn(*shape)
return (torch.complex(sig_real, sig_imag)/np.sqrt(2)).to(device)
def pwr_normalize(sig):
_, num_ele = sig.shape[0], torch.numel(sig[0])
pwr_sig = torch.sum(torch.abs(sig)**2, dim=-1)/num_ele
sig = sig/torch.sqrt(pwr_sig.unsqueeze(-1))
return sig
def np_to_torch(img):
img = np.swapaxes(img, 0, 1) # w, h, c
img = np.swapaxes(img, 0, 2) # c, h, w
return torch.from_numpy(img).float()
def to_chan_last(img):
img = img.transpose(1, 2)
img = img.transpose(2, 3)
return img
def as_img_array(image):
image = image.clamp(0, 1) * 255.0
return torch.round(image)
def calc_psnr(predictions, targets):
metric = []
for i, pred in enumerate(predictions):
original = as_img_array(targets[i])
compare = as_img_array(pred)
val = psnr(original, compare)
metric.append(val)
return metric
def calc_msssim(predictions, targets):
metric = []
for i, pred in enumerate(predictions):
original = as_img_array(targets[i])
compare = as_img_array(pred)
# val = msssim(original, compare)
val = ms_ssim(original, compare, data_range=255,
win_size=3, size_average=True)
metric.append(val)
return metric
def calc_ssim(predictions, targets):
metric = []
for i, pred in enumerate(predictions):
original = as_img_array(targets[i])
compare = as_img_array(pred)
val = ssim(original, compare, data_range=255,
size_average=True)
metric.append(val)
return metric
import nltk
from pytorch_transformers import BertTokenizer
from nltk.translate.bleu_score import sentence_bleu
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
def tokens2sentence(outputs):
sentences = []
#print(outputs)
for tokens in outputs:
sentence = []
for token in tokens:
word = tokenizer.decode([int(token)])
if word == '[PAD]':
break
sentence.append(word)
sentences.append(sentence)
return sentences
def computebleu(sentences, targets):
score = 0
assert (len(sentences) == len(targets))
def cut_token(sentence):
tmp = []
for token in sentence:
if token == '[UNK]':
tmp.append(token)
else:
tmp += [word for word in token]
return tmp
for sentence, target in zip(sentences, targets):
sentence = cut_token(sentence)
target = cut_token(target)
score += sentence_bleu([target], sentence, weights=(1, 0, 0, 0))
return score
def calc_metrics(y_true, y_pred, mode=None, to_print=True):
"""
Metric scheme adapted from:
https://github.com/yaohungt/Multimodal-Transformer/blob/master/src/eval_metrics.py
"""
def multiclass_acc(preds, truths):
"""
Compute the multiclass accuracy w.r.t. groundtruth
:param preds: Float array representing the predictions, dimension (N,)
:param truths: Float/int array representing the groundtruth classes, dimension (N,)
:return: Classification accuracy
"""
return np.sum(np.round(preds) == np.round(truths)) / float(len(truths))
test_preds = y_pred
test_truth = y_true
non_zeros = np.array([i for i, e in enumerate(test_truth) if e != 0])
test_preds_a7 = np.clip(test_preds, a_min=-3., a_max=3.)
test_truth_a7 = np.clip(test_truth, a_min=-3., a_max=3.)
test_preds_a5 = np.clip(test_preds, a_min=-2., a_max=2.)
test_truth_a5 = np.clip(test_truth, a_min=-2., a_max=2.)
mae = np.mean(np.absolute(test_preds - test_truth)) # Average L1 distance between preds and truths
corr = np.corrcoef(test_preds, test_truth)[0][1]
mult_a7 = multiclass_acc(test_preds_a7, test_truth_a7)
mult_a5 = multiclass_acc(test_preds_a5, test_truth_a5)
# f_score = f1_score((test_preds[non_zeros] > 0), (test_truth[non_zeros] > 0), average='weighted')
# pos - neg
binary_truth = (test_truth[non_zeros] > 0)
binary_preds = (test_preds[non_zeros] > 0)
if to_print:
# print("mae: ", mae)
# print("corr: ", corr)
# print("mult_acc: ", mult_a7)
print("Classification Report (pos/neg) :")
# print(classification_report(binary_truth, binary_preds, digits=5))
print("Accuracy (pos/neg) ", accuracy_score(binary_truth, binary_preds))
# non-neg - neg
binary_truth = (test_truth >= 0)
binary_preds = (test_preds >= 0)
if to_print:
print("Classification Report (non-neg/neg) :")
# print(classification_report(binary_truth, binary_preds, digits=5))
print("Accuracy (non-neg/neg) ", accuracy_score(binary_truth, binary_preds))
return accuracy_score(binary_truth, binary_preds)
class DiffPruningLoss(torch.nn.Module):
def __init__(self, base_criterion: torch.nn.Module, dynamic=True, ratio_weight=2.0, main_weight=1.):
super().__init__()
self.base_criterion = base_criterion
self.main_weight = 1.
self.surp_weight = 0.022
self.rho_weight = 0.01
self.vq_weight = 2.0
self.print_mode = True
self.count = 0
self.main_loss_record = 0.
self.surp_loss_record = 0.
self.vq_loss_record = 0.
self.keep_ratio_record = 0.
self.dynamic = dynamic
if self.dynamic:
print('using dynamic loss')
def forward(self, outputs, labels):
pred, mask_m, rho, vq_loss = outputs
surp_loss = 0.0
score = mask_m
keep_ratio = score.mean(1)
surp_loss = surp_loss + ((keep_ratio - rho) ** 2).mean() ### The supervised loss.
main_loss = self.base_criterion(pred, labels) ### Reconstruction loss.
loss = self.main_weight * main_loss + \
self.surp_weight * surp_loss + \
self.rho_weight * rho + self.vq_weight * vq_loss
# loss = self.clf_weight * cls_loss + vq_loss
if self.print_mode:
self.main_loss_record += main_loss.item()
self.surp_loss_record += surp_loss.item()
self.vq_loss_record += vq_loss.item()
self.keep_ratio_record += keep_ratio.mean().item()
self.count += 1
if self.count == 100:
print('loss info: main_loss=%.4f, surp_loss=%.4f, vq_loss=%.4f, keep ratio=%.4f'
% (self.main_loss_record / self.count,
self.surp_loss_record / self.count,
self.vq_loss_record / self.count,
self.keep_ratio_record / self.count))
self.main_loss_record = 0
self.surp_loss_record = 0
self.vq_loss_record = 0
self.keep_ratio_record = 0
self.count = 0
return loss