-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
223 lines (167 loc) · 7.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""
This file belongs to the MultiBodySync code repository and is distributed for free.
Author: Jiahui Huang <huang-jh18@mails.tsinghua.edu.cn>
"""
import yaml
import argparse
from pathlib import Path
from torch import optim
from dataset import MultibodyDataset, DatasetSpec as ds
from torch.optim.lr_scheduler import LambdaLR
from utils.pytorch_util import BNMomentumScheduler, Trainer
from torch.utils.data import DataLoader
from loss import *
def lr_curve(it):
return max(
args.lr_decay ** (int(it * args.batch_size / args.decay_step)),
args.lr_clip / args.lr,
)
def bn_curve(it):
if args.decay_step == -1:
return args.bn_momentum
else:
return max(
args.bn_momentum
* args.bn_decay ** (int(it * args.batch_size / args.decay_step)),
1e-2,
)
def get_flow_train_specs():
criterion = MultiScaleFlowLoss(alpha=[0.04, 0.08, 0.16])
def forward_fn(network, data, is_eval=False):
with torch.set_grad_enabled(not is_eval):
inputs, flow = data
inputs = inputs.cuda()
flow = flow.cuda()
pos1, pos2 = inputs[:, 0, ...].contiguous(), inputs[:, 1, ...].contiguous()
pred_flows, fps_pc1_idxs, fps_pc2_idxs, draw_pc1, draw_pc2 = network(pos1, pos2, pos1, pos2)
loss = criterion(pred_flows, flow, fps_pc1_idxs)
loss_dict = {'loss': loss.item()}
return loss, loss_dict
return forward_fn, [ds.PC, ds.FLOW], \
[[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 2], [1, 3], [2, 0], [2, 1], [2, 3], [3, 0], [3, 1], [3, 2]]
def get_mot_train_specs():
from utils.pointnet2_util import furthest_point_sample
criterion = CombinedLoss(names=['trans', 'group'], loss=[MotTransLoss(), MotGroupLoss()], weights=[1.0, 1.0])
def forward_fn(network, data, is_eval=False):
with torch.set_grad_enabled(not is_eval):
inputs, flow, segm = data
inputs = inputs.cuda()
segm = segm.cuda()
dense_flow = inputs[:, 1].unsqueeze(1) - inputs[:, 0].unsqueeze(2)
dist_mat = -torch.cdist(inputs[:, 0] + flow.cuda(), inputs[:, 1]) / 0.01
flow01 = (dense_flow * torch.softmax(dist_mat, dim=-1).unsqueeze(-1)).sum(2)
flow10 = -(dense_flow * torch.softmax(dist_mat, dim=-2).unsqueeze(-1)).sum(1)
flow = torch.stack([flow01, flow10], dim=1)
sub_ind0 = furthest_point_sample(inputs[:, 0, ...].contiguous(), 256).long()
sub_ind1 = furthest_point_sample(inputs[:, 1, ...].contiguous(), 256).long()
sub_inds = torch.stack([sub_ind0, sub_ind1], dim=1)
pd_trans, pd_group_matrix, res0, res1 = network(inputs, flow, sub_inds)
loss = criterion(segm=segm,
pred_support=pd_group_matrix,
group_sub_idx=sub_inds,
trans_res0=res0,
trans_res1=res1)
loss_dict = {}
loss_dict.update(loss)
loss = loss['sum']
del loss_dict['sum']
loss_dict["loss"] = loss.item()
return loss, loss_dict
return forward_fn, [ds.PC, ds.FLOW, ds.SEGM], [[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]
def get_conf_train_specs():
from models.conf_net import get_network_input
from models.flow_net import FlowNet
with Path(args.flow_model).open() as yf:
flow_config = yaml.load(yf, Loader=yaml.FullLoader)
flow_net_weight_path = flow_config["save_path"] + "/best.pth.tar"
flow_network = FlowNet()
flow_network.load_state_dict(torch.load(flow_net_weight_path)['model_state'])
flow_network.cuda().eval()
criterion = FlowConfLoss()
def forward_fn(network, data, is_eval=False):
with torch.set_grad_enabled(not is_eval):
inputs, flow = data
inputs = inputs.cuda()
flow = flow.cuda()
pc_i, pc_j = inputs[:, 0].contiguous(), inputs[:, 1].contiguous()
with torch.no_grad():
flow_ij, _, _, _, _ = flow_network.forward(pc_i, pc_j, pc_i, pc_j)
flow_ij = flow_ij[0].transpose(-1, -2) # (B, N, 3)
is_pos = torch.sum((flow_ij - flow) ** 2, dim=-1) < (0.1 ** 2)
matches = get_network_input(pc_i, pc_j, flow_ij)
logits_init, logits_iter = network(matches)
loss = criterion(logits=[logits_init, logits_iter], is_pos=is_pos)
loss_dict = {}
loss_dict.update(loss)
loss = loss['loss']
loss_dict["loss"] = loss.item()
return loss, loss_dict
return forward_fn, [ds.PC, ds.FLOW], \
[[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3], [1, 0], [2, 0], [3, 0], [2, 1], [3, 1], [3, 2]]
def get_full_train_specs():
criterion = CombinedLoss(names=['flow', 'rflow', 'iou'],
loss=[MultiwayFlowLoss(4), MultiwayRFlowLoss(4), IoULoss()],
weights=[0.05, 0.01, 1.0])
def forward_fn(network, data, is_eval=False):
with torch.set_grad_enabled(not is_eval):
inputs, segm, full_flow = data
inputs = inputs.cuda()
pd_segm, pd_raw_flow, pd_rigid_flow = network(inputs)
loss = criterion(segm=segm.cuda(),
pd_segm=pd_segm,
gt_full_flow=full_flow.cuda(),
pd_flow_dict=pd_raw_flow,
pd_rflow_dict=pd_rigid_flow)
loss_dict = {}
loss_dict.update(loss)
loss = loss['sum']
del loss_dict['sum']
loss_dict["loss"] = loss.item()
return loss, loss_dict
return forward_fn, [ds.PC, ds.SEGM, ds.FULL_FLOW], None
def train():
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = LambdaLR(optimizer, lr_lambda=lr_curve)
bnm_scheduler = BNMomentumScheduler(model, bn_lambda=bn_curve)
train_set = MultibodyDataset(args.train_base_folder, model_data_spec, 'train', model_view_sel)
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=4)
val_set = MultibodyDataset(args.val_base_folder, model_data_spec, 'val', model_view_sel)
val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=4)
trainer = Trainer(
model, model_fn, optimizer,
exp_base=args.save_path,
lr_scheduler=lr_scheduler,
bnm_scheduler=bnm_scheduler
)
trainer.train(args.epochs, train_loader, val_loader)
if __name__ == '__main__':
# torch.autograd.set_detect_anomaly(True)
parser = argparse.ArgumentParser()
parser.add_argument('config', type=str, help='Config files')
# Read parameters
args = parser.parse_args()
with Path(args.config).open() as f:
configs = yaml.load(f, Loader=yaml.FullLoader)
for ckey, cvalue in configs.items():
args.__dict__[ckey] = cvalue
# Dispatch training.
if args.type == "flow":
from models.flow_net import FlowNet
model = FlowNet().cuda()
model_fn, model_data_spec, model_view_sel = get_flow_train_specs()
elif args.type == "mot":
from models.mot_net import MotNet
model = MotNet().cuda()
model_fn, model_data_spec, model_view_sel = get_mot_train_specs()
elif args.type == "conf":
from models.conf_net import ConfNet
model = ConfNet().cuda()
model_fn, model_data_spec, model_view_sel = get_conf_train_specs()
elif args.type == "full":
from models.full_net import FullNet
model = FullNet(args).cuda()
model_fn, model_data_spec, model_view_sel = get_full_train_specs()
else:
raise NotImplementedError
# Perform training
train()