-
Notifications
You must be signed in to change notification settings - Fork 901
/
Copy path3_train_policy.py
107 lines (87 loc) · 4.46 KB
/
3_train_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
"""This scripts demonstrates how to train Diffusion Policy on the PushT environment.
Once you have trained a model with this script, you can try to evaluate it on
examples/2_evaluate_pretrained_policy.py
"""
from pathlib import Path
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
from lerobot.common.datasets.utils import dataset_to_policy_features
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
from lerobot.configs.types import FeatureType
def main():
# Create a directory to store the training checkpoint.
output_directory = Path("outputs/train/example_pusht_diffusion")
output_directory.mkdir(parents=True, exist_ok=True)
# # Select your device
device = torch.device("cuda")
# Number of offline training steps (we'll only do offline training for this example.)
# Adjust as you prefer. 5000 steps are needed to get something worth evaluating.
training_steps = 5000
log_freq = 1
# When starting from scratch (i.e. not from a pretrained policy), we need to specify 2 things before
# creating the policy:
# - input/output shapes: to properly size the policy
# - dataset stats: for normalization and denormalization of input/outputs
dataset_metadata = LeRobotDatasetMetadata("lerobot/pusht")
features = dataset_to_policy_features(dataset_metadata.features)
output_features = {key: ft for key, ft in features.items() if ft.type is FeatureType.ACTION}
input_features = {key: ft for key, ft in features.items() if key not in output_features}
# Policies are initialized with a configuration class, in this case `DiffusionConfig`. For this example,
# we'll just use the defaults and so no arguments other than input/output features need to be passed.
cfg = DiffusionConfig(input_features=input_features, output_features=output_features)
# We can now instantiate our policy with this config and the dataset stats.
policy = DiffusionPolicy(cfg, dataset_stats=dataset_metadata.stats)
policy.train()
policy.to(device)
# Another policy-dataset interaction is with the delta_timestamps. Each policy expects a given number frames
# which can differ for inputs, outputs and rewards (if there are some).
delta_timestamps = {
"observation.image": [i / dataset_metadata.fps for i in cfg.observation_delta_indices],
"observation.state": [i / dataset_metadata.fps for i in cfg.observation_delta_indices],
"action": [i / dataset_metadata.fps for i in cfg.action_delta_indices],
}
# In this case with the standard configuration for Diffusion Policy, it is equivalent to this:
delta_timestamps = {
# Load the previous image and state at -0.1 seconds before current frame,
# then load current image and state corresponding to 0.0 second.
"observation.image": [-0.1, 0.0],
"observation.state": [-0.1, 0.0],
# Load the previous action (-0.1), the next action to be executed (0.0),
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
# used to supervise the policy.
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
}
# We can then instantiate the dataset with these delta_timestamps configuration.
dataset = LeRobotDataset("lerobot/pusht", delta_timestamps=delta_timestamps)
# Then we create our optimizer and dataloader for offline training.
optimizer = torch.optim.Adam(policy.parameters(), lr=1e-4)
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=4,
batch_size=64,
shuffle=True,
pin_memory=device.type != "cpu",
drop_last=True,
)
# Run training loop.
step = 0
done = False
while not done:
for batch in dataloader:
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
output_dict = policy.forward(batch)
loss = output_dict["loss"]
loss.backward()
optimizer.step()
optimizer.zero_grad()
if step % log_freq == 0:
print(f"step: {step} loss: {loss.item():.3f}")
step += 1
if step >= training_steps:
done = True
break
# Save a policy checkpoint.
policy.save_pretrained(output_directory)
if __name__ == "__main__":
main()