Skip to content

Latest commit

 

History

History
111 lines (87 loc) · 11.3 KB

path_question.md

File metadata and controls

111 lines (87 loc) · 11.3 KB

PathQuestion

PathQuestion[1] includes two subsets, PQ and PQL, constructed by adopting two subsets of Freebase as Knowledge Bases. In this dataset, paths are extracted between two entities which span two hops (denoted by -2H) or three hops (denoted by -3H) and then generated natural language questions with templates. To make the generated questions analogical to real-world questions, paraphrasing templates and synonyms for relations are included by searching the Internet and two real-world datasets, WebQuestions[2] and WikiAnswers[3]. In this way, the syntactic structure and surface wording of the generated questions have been greatly enriched.

Please see the original paper for more details about the dataset.

This dataset can be downloaded via the link.

Leaderboard

PQ (2-hop)

Leaderboard

Model / System Year Precision Recall F1 Language Reported by
ISM 2022 - - 99.1(Hits@1) EN AlAgha, 2022
QAGCN 2022 - - 98.5(Hits@1) EN Wang et al.
Uhop-HR 2022 - - 97.6(Hits@1) EN AlAgha, 2022
AlAgha, 2022 2022 - - 97.4(Hits@1) EN AlAgha, 2022
SRN 2022 - - 96.3(Hits@1) EN Wang et al.
RL-MHR 2022 - - 94.1(Hits@1) EN AlAgha, 2022
TransferNet 2022 - - 93.2(Hits@1) EN AlAgha, 2022
IRN 2022 - - 91.9(Hits@1) EN Wang et al.
IRN 2022 - - 78.3(Hits@1) EN AlAgha, 2022
HR-BiLSTM 2022 - - 76.8(Hits@1) EN AlAgha, 2022
MINERVA 2022 - - 75.9(Hits@1) EN Wang et al.

PQL (2-hop)

Leaderboard

Model / System Year Precision Recall F1 Accuracy Language Reported by
AlAgha, 2022 2022 - - 92.3(Hits@1) - EN AlAgha, 2022
Edge-aware GNN 2022 - - 85.6(Hits@1) - EN Zhang
ISM 2022 - - 84.9(Hits@1) - EN AlAgha, 2022
TransferNet 2022 - - 84.1(Hits@1) - EN AlAgha, 2022
Uhop-HR 2022 - - 82.6(Hits@1) - EN AlAgha, 2022
RL-MHR 2022 - - 82.2(Hits@1) - EN AlAgha, 2022
GlobalGraph 2022 - - 76.0(Hits@1) - EN Zhang
2HR-DR 2022 - - 75.5(Hits@1) - EN Zhang
IRN 2022 - - 72.5(Hits@1) - EN Zhang
SGReader 2022 - - 71.9(Hits@1) - EN Zhang
HR-BiLSTM 2022 - - 71.9(Hits@1) - EN AlAgha, 2022
GRAFT-Net 2022 - - 70.7(Hits@1) - EN Zhang
IRN 2022 - - 66.2(Hits@1) - EN AlAgha, 2022
KV-MemNN 2022 - - 62.2(Hits@1) - EN Zhang
MRP-QA-marginal_prob 2022 - - - 98.4 EN Wang et al.
UHop 2022 - - - 97.5 EN Wang et al.
HR-BiLSTM 2022 - - - 97.5 EN Wang et al.
ABWIM 2022 - - - 94.3 EN Wang et al.
KV-MemNN 2022 - - - 72.2 EN Wang et al.

PQ (3-hop)

Leaderboard

Model / System Year Precision Recall F1 Language Reported by
AlAgha, 2022 2022 - - 98.7(Hits@1) EN AlAgha, 2022
ISM 2022 - - 95.7(Hits@1) EN AlAgha, 2022
TransferNet 2022 - - 91.3(Hits@1) EN AlAgha, 2022
Uhop-HR 2022 - - 91.3(Hits@1) EN AlAgha, 2022
QAGCN 2022 - - 90.6(Hits@1) EN Wang et al.
SRN 2022 - - 89.2(Hits@1) EN Wang et al.
RL-MHR 2022 - - 87.2(Hits@1) EN AlAgha, 2022
IRN 2022 - - 83.3(Hits@1) EN Wang et al.
IRN 2022 - - 74.3(Hits@1) EN AlAgha, 2022
HR-BiLSTM 2022 - - 74.1(Hits@1) EN AlAgha, 2022
MINERVA 2022 - - 71.2(Hits@1) EN Wang et al.

PQL (3-hop)

Leaderboard

Model / System Year Precision Recall F1 Accuracy Language Reported by
GlobalGraph 2022 - - 94.1(Hits@1) - EN Zhang
Edge-aware GNN 2022 - - 93.1(Hits@1) - EN Zhang
2HR-DR 2022 - - 92.1(Hits@1) - EN Zhang
GRAFT-Net 2022 - - 91.3(Hits@1) - EN Zhang
AlAgha, 2022 2022 - - 89.7(Hits@1) - EN AlAgha, 2022
SGReader 2022 - - 89.3(Hits@1) - EN Zhang
TransferNet 2022 - - 82.7(Hits@1) - EN AlAgha, 2022
ISM 2022 - - 81.7(Hits@1) - EN AlAgha, 2022
Uhop-HR 2022 - - 80.1(Hits@1) - EN AlAgha, 2022
RL-MHR 2022 - - 77.8(Hits@1) - EN AlAgha, 2022
IRN 2022 - - 71.0(Hits@1) - EN Zhang
KV-MemNN 2022 - - 67.4(Hits@1) - EN Zhang
HR-BiLSTM 2022 - - 61.6(Hits@1) - EN AlAgha, 2022
IRN 2022 - - 59.1(Hits@1) - EN AlAgha, 2022
MRP-QA-marginal_prob 2022 - - - 97.8 EN Wang et al.
UHop 2022 - - - 89.3 EN Wang et al.
ABWIM 2022 - - - 89.3 EN Wang et al.
HR-BiLSTM 2022 - - - 87.9 EN Wang et al.

References

[1] Zhou, Mantong, Minlie Huang, and Xiaoyan Zhu. An interpretable reasoning network for multi-relation question answering. arXiv preprint arXiv:1801.04726 (2018).

[2] Berant, Jonathan, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from question-answer pairs. In Proceedings of the 2013 conference on empirical methods in natural language processing, pp. 1533-1544. 2013.

[3] Fader, Anthony, Luke Zettlemoyer, and Oren Etzioni. Paraphrase-driven learning for open question answering. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1608-1618. 2013.

Go back to the README