forked from wb14123/seq2seq-couplet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseq2seq.py
185 lines (148 loc) · 7.03 KB
/
seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import tensorflow as tf
from tensorflow.contrib import rnn
from tensorflow.python.layers import core as layers_core
def getLayeredCell(layer_size, num_units, input_keep_prob,
output_keep_prob=1.0):
return rnn.MultiRNNCell([rnn.DropoutWrapper(rnn.BasicLSTMCell(num_units),
input_keep_prob, output_keep_prob) for i in range(layer_size)])
def bi_encoder(embed_input, in_seq_len, num_units, layer_size, input_keep_prob):
# encode input into a vector
bi_layer_size = int(layer_size / 2)
encode_cell_fw = getLayeredCell(bi_layer_size, num_units, input_keep_prob)
encode_cell_bw = getLayeredCell(bi_layer_size, num_units, input_keep_prob)
bi_encoder_output, bi_encoder_state = tf.nn.bidirectional_dynamic_rnn(
cell_fw = encode_cell_fw,
cell_bw = encode_cell_bw,
inputs = embed_input,
sequence_length = in_seq_len,
dtype = embed_input.dtype,
time_major = False)
# concat encode output and state
encoder_output = tf.concat(bi_encoder_output, -1)
encoder_state = []
for layer_id in range(bi_layer_size):
encoder_state.append(bi_encoder_state[0][layer_id])
encoder_state.append(bi_encoder_state[1][layer_id])
encoder_state = tuple(encoder_state)
return encoder_output, encoder_state
def attention_decoder_cell(encoder_output, in_seq_len, num_units, layer_size,
input_keep_prob):
attention_mechanim = tf.contrib.seq2seq.BahdanauAttention(num_units,
encoder_output, in_seq_len, normalize = True)
# attention_mechanim = tf.contrib.seq2seq.LuongAttention(num_units,
# encoder_output, in_seq_len, scale = True)
cell = getLayeredCell(layer_size, num_units, input_keep_prob)
cell = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanim,
attention_layer_size=num_units)
return cell
def decoder_projection(output, output_size):
return tf.layers.dense(output, output_size, activation=None,
use_bias=False, name='output_mlp')
def train_decoder(encoder_output, in_seq_len, target_seq, target_seq_len,
encoder_state, num_units, layers, embedding, output_size,
input_keep_prob, projection_layer):
decoder_cell = attention_decoder_cell(encoder_output, in_seq_len, num_units,
layers, input_keep_prob)
batch_size = tf.shape(in_seq_len)[0]
init_state = decoder_cell.zero_state(batch_size, tf.float32).clone(
cell_state=encoder_state)
helper = tf.contrib.seq2seq.TrainingHelper(
target_seq, target_seq_len, time_major=False)
decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper,
init_state, output_layer=projection_layer)
outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder,
maximum_iterations=100)
return outputs.rnn_output
def infer_decoder(encoder_output, in_seq_len, encoder_state, num_units, layers,
embedding, output_size, input_keep_prob, projection_layer):
decoder_cell = attention_decoder_cell(encoder_output, in_seq_len, num_units,
layers, input_keep_prob)
batch_size = tf.shape(in_seq_len)[0]
init_state = decoder_cell.zero_state(batch_size, tf.float32).clone(
cell_state=encoder_state)
# TODO: start tokens and end tokens are hard code
"""
helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(
embedding, tf.fill([batch_size], 0), 1)
decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper,
init_state, output_layer=projection_layer)
"""
decoder = tf.contrib.seq2seq.BeamSearchDecoder(
cell=decoder_cell,
embedding=embedding,
start_tokens=tf.fill([batch_size], 0),
end_token=1,
initial_state=init_state,
beam_width=10,
output_layer=projection_layer,
length_penalty_weight=1.0)
outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder,
maximum_iterations=100)
return outputs.sample_id
def seq2seq(in_seq, in_seq_len, target_seq, target_seq_len, vocab_size,
num_units, layers, dropout):
in_shape = tf.shape(in_seq)
batch_size = in_shape[0]
if target_seq != None:
input_keep_prob = 1 - dropout
else:
input_keep_prob = 1
projection_layer=layers_core.Dense(vocab_size, use_bias=False)
# embedding input and target sequence
with tf.device('/cpu:0'):
embedding = tf.get_variable(
name = 'embedding',
shape = [vocab_size, num_units])
embed_input = tf.nn.embedding_lookup(embedding, in_seq, name='embed_input')
# encode and decode
encoder_output, encoder_state = bi_encoder(embed_input, in_seq_len,
num_units, layers, input_keep_prob)
batch_size = tf.shape(in_seq_len)[0]
if target_seq != None:
decoder_cell = attention_decoder_cell(encoder_output, in_seq_len, num_units,
layers, input_keep_prob)
init_state = decoder_cell.zero_state(batch_size, tf.float32).clone(
cell_state=encoder_state)
embed_target = tf.nn.embedding_lookup(embedding, target_seq,
name='embed_target')
helper = tf.contrib.seq2seq.TrainingHelper(
embed_target, target_seq_len, time_major=False)
decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper,
init_state, output_layer=projection_layer)
else:
# TODO: start tokens and end tokens are hard code
beam_width = 10
tiled_encoder_output = tf.contrib.seq2seq.tile_batch(
encoder_output, multiplier=beam_width)
tiled_encoder_state = tf.contrib.seq2seq.tile_batch(
encoder_state, multiplier=beam_width)
tiled_in_seq_len = tf.contrib.seq2seq.tile_batch(
in_seq_len , multiplier=beam_width)
decoder_cell = attention_decoder_cell(tiled_encoder_output, tiled_in_seq_len, num_units,
layers, input_keep_prob)
init_state = decoder_cell.zero_state(batch_size * beam_width, tf.float32).clone(
cell_state=tiled_encoder_state)
decoder = tf.contrib.seq2seq.BeamSearchDecoder(
cell=decoder_cell,
embedding=embedding,
start_tokens=tf.fill([batch_size], 0),
end_token=1,
initial_state=init_state,
beam_width=beam_width,
output_layer=projection_layer,
length_penalty_weight=1.0)
outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder,
maximum_iterations=100)
if target_seq != None:
return outputs.rnn_output
else:
return (outputs.predicted_ids,
outputs.beam_search_decoder_output.scores)
def seq_loss(output, target, seq_len):
target = target[:, 1:]
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=output,
labels=target)
batch_size = tf.shape(target)[0]
loss_mask = tf.sequence_mask(seq_len, tf.shape(output)[1])
cost = cost * tf.to_float(loss_mask)
return tf.reduce_sum(cost) / tf.to_float(batch_size)