-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_GA.py
executable file
·201 lines (164 loc) · 8.31 KB
/
train_GA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#!/usr/bin/env python3
"""Train a DNN classifiers with sampled data."""
import argparse
import glob
import os
import pickle
from collections import Counter
import numpy as np
import pandas as pd
import torch
from classifiers import DNNClassifier
from classifiers import save_model
from classifiers import train
from ga import load_checkpoint
def load_data_with_samples(data_path: str, samples_dir: str = None, individual: list = None) -> tuple:
"""
Function to load the csv data file.
Parameters
----------
data_path: str
samples_dir: str
individual: list
Returns
-------
tuple
"""
assert isinstance(data_path, str) and os.path.exists(data_path)
if samples_dir is not None:
assert isinstance(samples_dir, str) and os.path.exists(samples_dir)
if individual is not None:
assert isinstance(individual, list)
assert (os.path.splitext(data_path)[1]).lower() == ".csv"
# Load the dataset.
data_df: pd.DataFrame = pd.read_csv(data_path, delimiter=",")
data_np: np.ndarray = data_df.values
x_np: np.ndarray = data_np[:, 0:-1]
y_np: np.ndarray = data_np[:, -1]
if (samples_dir is not None) and (individual is not None):
list_sample_file: list = glob.glob(os.path.join(samples_dir, "**", "*.pkl"), recursive=True)
list_sample_file.sort()
list_sample_by_label: list = list()
for sample_file in list_sample_file:
with open(os.path.join(sample_file), mode="rb") as fp:
list_sample_by_label.append(pickle.load(fp))
y_stats: dict = Counter(y_np)
list_label: list = list(list_sample_by_label[0].keys())
for (i, ratio_by_label) in enumerate(individual):
label: int = list_label[i]
for (j, ratio_by_method) in enumerate(ratio_by_label):
method: int = j
if ratio_by_method > 0.0:
number: int = int(y_stats[label] * ratio_by_method)
new_x: np.ndarray = list_sample_by_label[method][label][0][:number]
new_y: np.ndarray = list_sample_by_label[method][label][1][:number]
x_np = np.concatenate([x_np, new_x], axis=0)
y_np = np.concatenate([y_np, new_y], axis=0)
x_tensor: torch.Tensor = torch.as_tensor(x_np, dtype=torch.float)
y_tensor: torch.Tensor = torch.as_tensor(y_np, dtype=torch.long)
return x_tensor, y_tensor
def parse_args():
parser = argparse.ArgumentParser(description="Arguments for train a classifiers.")
parser.add_argument("--train-data-path", type=str, required=True,
help="File path of a train data.",
dest="train_data_path")
parser.add_argument("--samples-dir", type=str, default=None, required=False,
help="Directory path of store samples.",
dest="samples_dir")
parser.add_argument("--ga-checkpoint-path", type=str, required=True,
help="File path to checkpoint of GA.",
dest="ga_checkpoint_path")
parser.add_argument("--model-save-path", type=str, required=True,
help="File path to store a trained classifiers model.",
dest="model_save_path")
parser.add_argument("--num-hidden-layers", type=int, default=1, required=False,
help="Parameter num_hidden_layers of classifier.",
dest="num_hidden_layers")
parser.add_argument("--batch-size", type=int, default=16, required=False,
help="Batch size during training.",
dest="batch_size")
parser.add_argument("--num-epochs", type=int, default=1, required=False,
help="Number of training epochs.",
dest="num_epochs")
parser.add_argument("--run-device", type=str, default="cpu", required=False,
help="Running device for PyTorch.",
dest="run_device")
parser.add_argument("--learning-rate", type=float, default=0.001, required=False,
help="Learning rate for Adam optimizer.",
dest="learning_rate")
parser.add_argument("--beta-1", type=float, default=0.9, required=False,
help="Beta 1 for Adam optimizer.",
dest="beta_1")
parser.add_argument("--beta-2", type=float, default=0.999, required=False,
help="Beta 2 for Adam optimizer.",
dest="beta_2")
parser.add_argument("--rand-seed", type=int, default=0, required=False,
help="Seed for generating random numbers.",
dest="rand_seed")
parser.add_argument("--verbose", action='store_true', required=False,
help="Verbose")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
TRAIN_DATA_PATH: str = args.train_data_path
SAMPLES_DIR: str = args.samples_dir
GA_CHECKPOINT_PATH: str = args.ga_checkpoint_path
MODEL_PATH: str = args.model_save_path
NUM_HIDDEN_LAYERS: int = args.num_hidden_layers
BATCH_SIZE: int = args.batch_size
NUM_EPOCHS: int = args.num_epochs
RUN_DEVICE: str = args.run_device
LEARNING_RATE: float = args.learning_rate
BETA_1: float = args.beta_1
BETA_2: float = args.beta_2
RAND_SEED: int = args.rand_seed
VERBOSE: bool = args.verbose
if not os.path.exists(TRAIN_DATA_PATH):
raise FileNotFoundError(TRAIN_DATA_PATH)
if not os.path.exists(SAMPLES_DIR):
raise FileNotFoundError(SAMPLES_DIR)
if os.path.exists(MODEL_PATH):
raise FileExistsError(MODEL_PATH)
if not os.path.exists(GA_CHECKPOINT_PATH):
raise FileNotFoundError(GA_CHECKPOINT_PATH)
assert isinstance(NUM_HIDDEN_LAYERS, int) and (NUM_HIDDEN_LAYERS > 0)
assert isinstance(BATCH_SIZE, int) and (BATCH_SIZE > 0)
assert isinstance(NUM_EPOCHS, int) and (NUM_EPOCHS > 0)
assert isinstance(RUN_DEVICE, str) and (RUN_DEVICE.lower() in ["cpu", "cuda"])
assert isinstance(LEARNING_RATE, float) and (LEARNING_RATE > 0.0)
assert isinstance(BETA_1, float) and (0.0 <= BETA_1 < 1.0)
assert isinstance(BETA_2, float) and (0.0 <= BETA_2 < 1.0)
assert isinstance(RAND_SEED, int) and (RAND_SEED >= 0)
assert isinstance(VERBOSE, bool)
np.random.seed(seed=RAND_SEED)
torch.manual_seed(seed=RAND_SEED)
numpy_random_state = np.random.get_state()
torch_random_state = torch.get_rng_state()
checkpoint: dict = load_checkpoint(load_path=GA_CHECKPOINT_PATH)
population: list = checkpoint["population"]
individual: list = population[0].base.tolist()
x, y = load_data_with_samples(data_path=TRAIN_DATA_PATH,
samples_dir=SAMPLES_DIR,
individual=individual)
size_features: int = x.size(1)
size_labels: int = int(y.max().item() - y.min().item()) + 1
test_x, test_y = load_data_with_samples(data_path=TRAIN_DATA_PATH)
# Train a classifiers and save the classifiers.
classifier = DNNClassifier(size_features=size_features,
num_hidden_layers=NUM_HIDDEN_LAYERS,
size_labels=size_labels)
trained_classifier, trained_random_state = train(classifier=classifier,
x=x,
y=y,
test_x=test_x,
test_y=test_y,
batch_size=BATCH_SIZE,
num_epochs=NUM_EPOCHS,
run_device=RUN_DEVICE,
learning_rate=LEARNING_RATE,
beta_1=BETA_1,
beta_2=BETA_2,
random_state=torch_random_state,
verbose=VERBOSE)
save_model(classifier=trained_classifier, model_path=MODEL_PATH, random_state=trained_random_state)
print(">> Save the trained classifier: {0}".format((MODEL_PATH)))