-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
259 lines (214 loc) · 8.85 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader, TensorDataset
import matplotlib.pyplot as plt
from torch import utils
import torchvision
from torchvision import transforms, utils
from torchvision.datasets import ImageFolder
import torchvision.models as models
from PIL import Image
# from torchsummary import summary
from torch.optim import lr_scheduler
import numpy as np
import random
from os.path import *
from os import listdir
from tqdm import tqdm
from ResNet import resnet50, resnet18, resnet34
from CNN2 import CustomCNN
import copy
from sklearn.preprocessing import normalize
import csv
from CNN import CNNModel
from EarlyStopping import EarlyStopping
np.random.seed(123)
torch.manual_seed(123)
img_size = 255
#####################################
train_dataset = ImageFolder(root='corona_dataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/train',
transform=transforms.Compose([
transforms.Resize(300), #300
transforms.RandomCrop(img_size), # 255 on one dimension
transforms.CenterCrop(img_size), # square
transforms.ToTensor(), # CxHxW FloatTensor (= 0~1 normalize automatically)
transforms.Normalize((0.5, 0.5, 0.5), # -1 ~ 1 normalize
(0.5, 0.5, 0.5)), # (c - m)/s
# transforms.RandomErasing()
]))
valid_dataset = ImageFolder(root='corona_dataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/test' ,
transform=transforms.Compose([
transforms.Resize(img_size), # 255 on one dimension
transforms.CenterCrop(img_size), # square
transforms.ToTensor(), # Tensor (= 0~1 normalize)
transforms.Normalize((0.5, 0.5, 0.5), # -1 ~ 1 normalize
(0.5, 0.5, 0.5)), # (c - m)/s
]))
batch_size = 20
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
valid_loader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=True)
print("==> DATA LOADED")
#visualize
# single_batch = next(iter(train_loader))
# single_img = single_batch[0][0]
# # t_img = single_img.view(single_img.shape[1], single_img.shape[2], single_img.shape[0])
# batch_grid = utils.make_grid(single_batch[0], nrow=4)
# plt.figure(figsize= (10,10))
# plt.imshow(batch_grid.permute(1,2,0))
# plt.show()
# print("==> first batch")
######################################################
model = resnet18(3, 1) #3 channels & 2 classes
# model = resnet34(3,1)
# model = CNNModel()
# model = CustomCNN((batch_size, 3, 255, 255) , 1)
print("==> MODEL LOADED")
# print(model)
#hyperparams
num_epochs = 20
num_batches = len(train_loader)
criterion = nn.BCEWithLogitsLoss()
learning_rate = 0.001
# criterion = nn.CrossEntropyLoss()
# optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-6)
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
scheduler = None
# scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min',factor=0.8,patience=10,verbose=True)
# scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs)
#use GPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
criterion = criterion.to(device)
es = EarlyStopping(patience=10)
print("==> MODEL ON GPU: {}".format(device))
#binary
def get_bin_label(y_pred, y_test): # [-7.8995]...
y_pred_tag = torch.round(torch.sigmoid(y_pred)) #sigmoid -> 0-1 -> round -> 0 or 1
corrects = (y_pred_tag == y_test).sum()
# acc = corrects / y_test.shape[0] # num of corrects / # total items
# acc = torch.round(acc)
return y_pred_tag, corrects
#print hyper params
print("\n\n#########################################")
print("hyper params: \n BATCH_SIZE>> {} \n LOSS_F>> {} \n OPT>> {} \n SCHEDULER>> {} \n IMG_SIZE>> {} \n DATA(train)>> {}\n DATA(test)>> {}".format(
batch_size,
criterion,
optimizer,
scheduler,
img_size,
len(train_loader),
len(valid_loader)
))
print("#########################################\n\n")
###########################################################################################
trn_loss_list = []
val_loss_list = []
trn_acc_list = []
val_acc_list = []
min_val_loss = 100
E_stop = False
for epoch in tqdm(range(num_epochs)):
if (E_stop): break
print("")
#data for each epoch
trn_loss = 0.0
trn_correct = 0
trn_total = 0
for i,trainset in enumerate(train_loader): #2680 / batch_size = # of iterations
model.train()
train_in, train_out = trainset
train_in, train_out = train_in.to(device), train_out.to(device)
optimizer.zero_grad()
#for binary
train_out = train_out.unsqueeze(1)
train_pred = model(train_in) #logits (binary: > 0 or < 0)
label_pred, t_correct = get_bin_label(train_pred, train_out)
trn_correct += t_correct.item()
#for 2classes
# _, label_pred = torch.max(train_pred, 1) #value , label
trn_total += train_out.size(0) #20
# trn_correct += (label_pred == train_out).sum().item() #works
#calculate loss
#for bceloss
train_out = train_out.type_as(train_pred)
#for both
t_loss = criterion(train_pred, train_out)
t_loss.backward()
optimizer.step()
trn_loss += t_loss.item()
valid_term = 20
if(i+1)%valid_term == 0: #after 20 updates
model.eval()
val_loss = 0.0
val_correct = 0
val_total = 0
with torch.no_grad(): #for validation!
for j, validset in enumerate(valid_loader):
valid_in, valid_out = validset
valid_in, valid_out = valid_in.to(device), valid_out.to(device)
#for binary
valid_out = valid_out.unsqueeze(1)
val_pred = model(valid_in) # logits (binary: > 0 or < 0)
val_label_pred, v_correct = get_bin_label(val_pred, valid_out)
val_correct += v_correct.item()
#for 2classes
# _, val_label_pred = torch.max(val_pred.data,1)
val_total += valid_out.size(0)
# val_correct += (val_label_pred == valid_out).sum().item()
#calculate loss
#for bce loss
valid_out = valid_out.type_as(val_pred)
#for both
v_loss = criterion(val_pred, valid_out)
val_loss += v_loss.item()
# scheduler.step(v_loss)
# scheduler.step()
lr = optimizer.param_groups[0]['lr']
#save if loss decreases
if (val_loss / len(valid_loader)) < min_val_loss:
#saving the model
min_val_loss = val_loss / len(valid_loader)
print("Saving best model: loss >> {:.4f} | acc >> {:.2f}".format(val_loss / len(valid_loader), 100*(val_correct / val_total)))
#early stopping
if es.step(torch.tensor(val_loss)):
E_stop = True
break
#print results
print("epoch: {}/{} | step: {}/{} | trn loss: {:.4f} | trn acc: {:.2f}% | test loss: {:.4f} | test acc: {:.2f}% | lr: {:.6f}".format(
epoch+1, num_epochs,
i+1, len(train_loader),
trn_loss / valid_term, #accumulated over term -> then reset
100*(trn_correct / trn_total),
val_loss / len(valid_loader),
100*(val_correct / val_total),
lr
))
trn_loss_list.append(trn_loss / valid_term)
val_loss_list.append(val_loss / len(valid_loader))
trn_acc_list.append(100 * (trn_correct / trn_total))
val_acc_list.append(100 * (val_correct / val_total))
#reinitialize
trn_loss = 0.0
trn_total = 0
trn_correct = 0
######################################################################################
# Summarize history for accuracy
plt.plot(trn_acc_list)
plt.plot(val_acc_list)
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('mini-batch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# Summarize history for loss
plt.plot(trn_loss_list)
plt.plot(val_loss_list)
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('mini-batch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()