-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFinal Project Covid Fatality Predictors.R
295 lines (204 loc) · 8.98 KB
/
Final Project Covid Fatality Predictors.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#####################################
#Final Project Ian McDonough
#####################################
# Set Working Directory
setwd("C:/Users/Ian/Desktop/Coding in R 2022 Spring/Final Project")
dir()
#install.packages('lmtest')
library(stringr)
#####################################
#Get Data
#####################################
#USA Covid Data
# https://www.kaggle.com/datasets/anandhuh/usa-statewise-latest-covid19-data
usacov = read.csv("USA Covid Data.csv")
# USA Geography
# https://www.census.gov/geographies/reference-files/2010/geo/state-area.html
usageo = read.csv("USA_Geo.csv")
#Vaccinantion Data
vac = read.csv("us_state_vaccinations.csv")
# USA Obesity
obe = read.csv("2020-overall.csv")
# Median Age
age = read.csv("Median_Age_States.csv")
# Human Development Index
hdi = read.csv("HDI.csv")
####################################
# Data Processing
####################################
#HDI
hdi = hdi[1:50,]
colnames(hdi)[3]="HDI"
# USA Geography (only States)
usageo1 = usageo[6:56, c("state.and.other.areas", "Land.Area1","Internal.Point..")]
usageo2 = subset(usageo1, state.and.other.areas != "District of Columbia")
#Rename
colnames(usageo2) <- c('State', 'Area', 'Latitude')
# Merging Data Sets
mydata = merge(usacov, usageo2, by = "State")
#Remove commas
mydata$Population = as.numeric(gsub(",","",mydata$Population))
mydata$Area = as.numeric(gsub(",","",mydata$Area))
# New Columns
mydata$Density = mydata$Population / mydata$Area
mydata$Death.Rate = (mydata$Total.Deaths / mydata$Total.Cases)*100
#Vaccine Data as of May 3rd
mayvac = vac[vac$date %in% "2022-05-03",]
mayvac1 = str_replace(mayvac$location, "New York State", "New York")
mayvac$location = mayvac1
colnames(mayvac)[2] = "State"
mydata = merge(mydata, mayvac, by='State', all.x = TRUE)
# Percent Vacinated
mydata$Percent_Vaccinated = (mydata$people_fully_vaccinated/mydata$Population)*100
# Merging Obesity Stats
mydata = merge(mydata, obe, by='State', all.x = TRUE)
#Merging Age Data
mydata = merge(mydata, age, by='State', all.x = TRUE)
# Merging HDI
mydata = merge(mydata, hdi, by='State', all.x = TRUE)
#Removing Redundent Columns
mydata = mydata[c("State", "Total.Cases","HDI","Prevalence", "Total.Deaths", "Total.Tests", "Latitude", "Population", "Area", "Density", "Death.Rate", "people_fully_vaccinated", "Percent_Vaccinated", "Median.Age")]
colnames(mydata)[4] = "Obesity_Rate"
row.names(mydata)= mydata$State
mydata[is.na(mydata)] = 0
class(mydata$Latitude)
mydata$Latitude = as.numeric(mydata$Latitude)
mydata$Latitude = format(round(mydata$Latiude), 1,) nsmall = 1)
###################################
# Summary Stats
##################################
# Average Death Rate Total
average_death_rate = mean(mydata$Death.Rate)
average_death_rate # Average Death Rate as of May 3rd: 1.164124%
summary (mydata$Death.Rate)
# Min and Max Death Rates
mydata[which.min(mydata$Death.Rate),] # Alaska had the lowest Death Rate
mydata[which.max(mydata$Death.Rate),] #Pennsylvania had the highest Death Rate
# Min and Max Vaccination Rate
summary(mydata$Percent_Vaccinated)
mydata[which.min(mydata$Percent_Vaccinated),] # Alabama has the lowest Vaccination Rate
mydata[which.max(mydata$Percent_Vaccinated),] # Rhode Island has the highest Vaccination Rate
# Min and Max Obesity Rate
summary(mydata$Obesity_Rate)
mydata[which.min(mydata$Obesity_Rate),] # Colorado has the lowest obesity rate
mydata[which.max(mydata$Obesity_Rate),] # Missisippi has the highest obesity rate
#Min and Max Median Age
summary(mydata$Median.Age)
mydata[which.min(mydata$Median.Age),] # Utah has the highest median age
mydata[which.max(mydata$Median.Age),] # Maine has the highest median age
###################################
#Graphing
###################################
#Focus
mydata1 = mydata[c("State","HDI", "Death.Rate", "Obesity_Rate", "Latitude", "Density", "Percent_Vaccinated", "Median.Age")]
plot(mydata1)
# Negative correllation between Obesity_Rate and Percent_Vaccinated..
# Latitude vs. Number of Deaths
lat = as.numeric(mydata$Latitude)
dr = mydata$Death.Rate
plot (lat, mydata$Total.Deaths, xlab = "Latitude", ylab = "Total Deaths",main = "Death by Latitude" )
abline(lm(mydata$Total.Deaths~lat,data=mydata),col='red')
#Coefficients
death.reg = lm(mydata$Total.Deaths~lat,data=mydata) #B1: -504.8
summary(death.reg)
# Organize Plots
par(mfrow=c(3,2))
# Latitude vs. Death Rate
plot (lat, dr, xlab = "Latitude", ylab = "Death Rate",main = "Death Rate by Latitude" ) # Slight Negative Trend between Latitude and Death Rate, Possibley due to HDI or Density
abline(lm(dr~lat,data=mydata),col='red')
#Coefficients
lat.reg = lm(dr~lat,data=mydata) # B1: -0.007486
summary(lat.reg)
# Density vs. Death Rate
plot (mydata$Density, dr, xlab = "State Pop Per Sqr Mile", ylab = "Death Rate",main = "Death Rate by Density" )
abline(lm(dr~mydata$Density,data=mydata),col='red')
# Coefficients
den.reg = lm(dr~mydata$Density,data=mydata) #B1: 0.0001828
summary(den.reg)
# Vaccination vs. Death Rate
plot (mydata$Percent_Vaccinated, dr, xlab = "Percent Vaccinated", ylab = "Death Rate",main = "Death Rate by Percent Vaccinated" )
abline(lm(dr~mydata$Percent_Vaccinated,data=mydata),col='red')
# Coefficeints
vac.reg = (lm(dr~mydata$Percent_Vaccinated,data=mydata)) #-0.0129
summary(vac.reg)
# Obesity vs. Death Rate
plot (mydata$Obesity_Rate, dr, xlab = "Obesity Rate", ylab = "Death Rate",main = "Death Rate by Percent Obese" )
abline(lm(dr~mydata$Obesity_Rate,data=mydata),col='red')
# Coefficeints
obe.reg = lm(dr~mydata$Obesity_Rate,data=mydata) # B1: 0.03111
summary(obe.reg)
# Median Age vs. Death Rate
plot (mydata$Median.Age, dr, xlab = "Median Age", ylab = "Death Rate",main = "Death Rate by Median Age" )
abline(lm(dr~mydata$Median.Age,data=mydata),col='red')
# Coefficeints
age.reg =lm(dr~mydata$Median.Age,data=mydata) # B1: 0.01636
summary(age.reg)
# HDI vs. Death Rate
plot (mydata$HDI, dr, xlab = "HDI", ylab = "Death Rate",main = "Death Rate by HDI" )
abline(lm(dr~mydata$HDI,data=mydata),col='red')
# Coefficeints
hdi.reg =lm(dr~mydata$HDI,data=mydata) # B1: 0.01636
summary(hdi.reg)
# Appears Homoscedastic
library(lmtest)
bptest(hdi.reg) #Breusch-Pagan test - to check for Homoscedasticity
#p-value = 0.02144
#################################
# Associations
#################################
#Focus
mydata1 = mydata[c("State", "Death.Rate", "Obesity_Rate", "Latitude", "Density", "Percent_Vaccinated", "Median.Age")]
plot(mydata1)
#Organize
par(mfrow=c(2,2))
# Obesity Rate vs. Vaccinated Rate
plot (mydata$Obesity_Rate, mydata$Percent_Vaccinated, xlab = "Obesity Rate", ylab = "Percent Vaccinated",main = "Vaccination Rate vs. Percent Obese" )
abline(lm(mydata$Percent_Vaccinated~mydata$Obesity_Rate,data=mydata),col='red')
# Coefficeints
obvac.reg = lm(mydata$Percent_Vaccinated~mydata$Obesity_Rate,data=mydata) # B1: -1.571
summary(obvac.reg)# Negative correllation between Obesity_Rate and Percent_Vaccinated..
# Latitude vs. HDI
plot (lat, mydata$HDI, xlab = "Latitude", ylab = "HDI", main = "HDI vs. Latitude" )
abline(lm(mydata$HDI~lat,data=mydata),col='red')
# Coefficeints
hdilat.reg = lm(mydata$HDI~lat,data=mydata) #
summary(hdilat.reg)
# Median Age vs. Latitude
plot (lat, mydata$Median.Age, xlab = "Latitude", ylab = "Median Age", main = "Median Age vs. Latitude" )
abline(lm(mydata$Median.Age~lat,data=mydata),col='red')
# Coefficeints
medlat.reg = lm(mydata$Median.Age~lat,data=mydata) #
summary(medlat.reg)
# Obesity vs. Latitude
plot (lat, mydata$Obesity_Rate, xlab = "Latitude", ylab = "Obesity Rate", main = "Obesity Rate vs. Latitude" )
abline(lm(mydata$Obesity_Rate~lat,data=mydata),col='red')
# Coefficeints
obelat.reg = lm(mydata$Obesity_Rate~lat,data=mydata) #
summary(obelat.reg)
# Obesity vs. HDI
plot (mydata$HDI, mydata$Obesity_Rate, xlab = "HDI", ylab = "Obesity Rate", main = "Obesity Rate vs. HDI" )
abline(lm(mydata$Obesity_Rate~mydata$HDI,data=mydata),col='red')
# Coefficeints
obehdi.reg = lm(mydata$Obesity_Rate~mydata$HDI,data=mydata) #
summary(obehdi.reg)
###################################
# Multiple Regression Model
###################################
mreg = lm(mydata$Death.Rate~ mydata$Percent_Vaccinated + mydata$Median.Age + mydata$Obesity_Rate + mydata$HDI + mydata$Density,data=mydata)
summary(mreg)
par(mfrow=c(2,2))
plot(mreg) # Very Heteroscedasic data
#define weights to use
weight <- 1 / lm(abs(mreg$residuals) ~ mreg$fitted.values)$fitted.values^2
#perform weighted least squares regression
wls_model <- lm(mydata$Death.Rate~ mydata$Percent_Vaccinated + mydata$Median.Age + mydata$Obesity_Rate + mydata$HDI + mydata$Density,data=mydata, weights = weight)
#view summary of model
summary(wls_model)
plot(wls_model)
#reduced model
mreg1 = lm(mydata$Death.Rate~ mydata$Percent_Vaccinated + mydata$HDI + mydata$Density,data=mydata)
weight1 <- 1 / lm(abs(mreg1$residuals) ~ mreg1$fitted.values)$fitted.values^2
red_wls_model <- lm(mydata$Death.Rate~ mydata$Percent_Vaccinated + mydata$HDI + mydata$Density,data=mydata, weights = weight1)
#view summary of model
summary(red_wls_model)
plot(red_wls_model)