-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPalmaConf2016.tex
514 lines (430 loc) · 14.3 KB
/
PalmaConf2016.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
\documentclass{beamer}
%%%%%%%%%%%%
% PACKAGES %
\usepackage{amsmath}
\usepackage{color}
%%%%%%%%%
% THEME %
\usetheme{Warsaw}
\setbeamertemplate{navigation symbols}{}
%%%%%%%%%%%%%%%%%%%
% CUSTOM COMMANDS %
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator*{\Cov}{Cov}
\DeclareMathOperator{\cov}{Cov}
\newcommand{\ket}[1]{\ensuremath{\vert #1 \rangle}}
\newcommand{\bra}[1]{\ensuremath{\langle #1 \vert}}
\newcommand{\braket}[2]{\ensuremath{\langle #1 \vert #2 \rangle}}
\newcommand{\braOket}[3]{\ensuremath{\langle #1 \vert #2 \vert #3 \rangle}}
\newcommand{\ketbra}[2]{\ensuremath{\vert #1 \rangle \! \langle #2 \vert}}
\newcommand{\expect}[1]{\ensuremath{\langle #1 \rangle}}
\newcommand{\varian}[1]{\ensuremath{\left(\Delta #1 \right)^2}}
\newcommand{\standard}[1]{\ensuremath{\left(\Delta #1 \right)}}
\newcommand{\ver}[2]{\ensuremath{\genfrac{}{}{0pt}{}{#1}{#2}}}
\newcommand{\tr}[1]{\ensuremath{\Tr \lcua #1\rcua}}
\newcommand{\trsub}[2]{\ensuremath{\Tr_{#1} \lcua #2 \rcua }}
\newcommand{\bsym}[1]{\ensuremath{\boldsymbol{#1}}}
\newcommand{\citate}[1]{{\footnotesize{\color{gray}[ #1 ]}}
}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\bea{\begin{eqnarray}}
\def\eea{\end{eqnarray}}
\def\bse{\begin{subequations}}
\def\ese{\end{subequations}}
\def\mtxid{\mathbbm{1}}
\def\d{{\rm d}}
\def\lpar{\left(}
\def\rpar{\right)}
\def\lcua{\left[}
\def\rcua{\right]}
\def\lcor{\left\{}
\def\rcor{\right\}}
\def\lang{\left\langle}
\def\rang{\right\rangle}
\def\l{\left}
\def\r{\right}
\def\nnnl{\nonumber\\}
\def\nnnlq{\nonumber\\ && \quad}
\def\nnnlqq{\nonumber\\ && \qquad}
\def\nnnlqqq{\nonumber\\ && \quad\qquad}
\def\ie{, \textit{i.e.}, }
\def\etal{\textit{et al. }}
%%%%%%%%%%%%%%%%
% THE DOCUMENT %
\begin{document}
%%%%%%%%%%%%%%
% TITLE PAGE %
\title{Optimal bound on the quantum\\ Fisher information}
\subtitle{\it Based on few initial expectation values
}
\author[Iagoba, Matthias, Otfried, G\'eza]{
\textbf{Iagoba Apellaniz} \inst{1},
Matthias Kleinmann \inst{1},
Otfried G\"uhne \inst{2},
\& G\'eza T\'oth \inst{1,3,4}
}
\institute{
\textbf{iagoba.apellaniz@gmail.com}\\
\vspace{5px}
\inst{1}
Department of Theoretical Physics, University of the Basque Country, Spain\\
\inst{2}
Naturwissenschaftlich-Technische Fakult\"at, Universit\"at Siegen, Germany\\
\inst{3}
IKERBASQUE, Basque Foundation for Science, Spain\\
\inst{4}
Wigner Research Centre for Physics, Hungarian Academy of Sciences, Hungary
}
\date{ICE-3 Palma de Mallorca; 2016-04-15}
%%%%%%%%%%%%%%%%
% BEGIN FRAMES %
\begin{frame}
\titlepage
\end{frame}
% Reset counter to skip title page
\addtocounter{framenumber}{-1}
\addtobeamertemplate{navigation symbols}{}{%
\usebeamerfont{footline}%
\usebeamercolor[fg]{footline}%
\hspace{1em}%
{\small\insertframenumber}
\vspace{2px}
}
\begin{frame}
\frametitle{Basics on quantum metrology}
\onslide<1->{
\begin{figure}
\includegraphics<1>[height=130px]{img/evolution-0.pdf}
\includegraphics<2>[height=130px]{img/evolution-1.pdf}
\includegraphics<3>[height=130px]{img/evolution-2.pdf}
\includegraphics<4->[height=130px]{img/evolution-3.pdf}
\end{figure}
}
\onslide<2->{
\begin{itemize}
\item The precision $\standard{\theta}^{-1}\propto {\color{blue}\sqrt{\mu}}$. \onslide<5>{How it scales with $N$?}
\end{itemize}
}
\end{frame}
\begin{frame}
\frametitle{The quantum Fisher information}
\begin{itemize}
\item<1-> The classical Cram\'er-Rao bound
\[
\standard{\theta}^{-1} \le {\sqrt{\mu \color{blue}
\int \d x \, p(x|\theta)
\lpar \tfrac{\partial \ln(p(x|\theta))}{\partial \theta} \rpar^2}}
\]
\item<2-> The quantum CR bound
\[
\standard{\theta}^{-1} \le {\sqrt{\mu \color{blue}F_Q [\varrho,A]}}
\]
\emph{\color{blue}Fisher information} maximised over all measurements.
\end{itemize}
\onslide<3>{
\begin{block}{}
\[
\begin{matrix}
\text{\underline{Best separable}} &\qquad \qquad&\text{\underline{Best state}} \\
& & \\
F_Q \propto N &\qquad \qquad& F_Q \propto N^2
\end{matrix}
\]
\end{block}
}
\end{frame}
\begin{frame}
\frametitle{Outline}
\tableofcontents
\end{frame}
\section{Introduction and Motivation}
\begin{frame}
\begin{itemize}
\only<1->{
\item For large systems, we only have \emph{\color{blue} a couple of expectation values} to characterise the state.
\only<1,2>{
\begin{figure}
\includegraphics<1>[height=142px]{img/ghz3-histogram.pdf}
\includegraphics<2>[height=142px]{img/ghz3-histogram-banned.pdf}
\end{figure}}
}
\item<3-> \emph{\color{blue} Many \bf inequalities} have been proposed to lower bound the quantum Fisher Information.
\only<3>{
\begin{block}{Bounds for qFI ($B_z$ homogeneous magnetic field)}
\vspace{4px}
\small
\[F_Q[\varrho,J_z]\geq \frac{\expect{J_x}^2}{\varian{J_y}},
\qquad\quad
F_Q[\varrho,J_z]\geq \beta^{-2}\frac{\expect{J_x^2+J_y^2}}{\varian{J_y}+\frac{1}{4}},
\]
\[F_Q[\varrho,J_z]\geq \frac{4(\expect{J_x^2+J_y^2})^2} {2\sqrt{\varian{J_x^2}\varian{J_y^2}} +\expect{J_x^2} -2\expect{J_y^2}(1+\expect{J_x^2}) +6\expect{J_yJ_x^2J_y} }
\]
\vspace{-4px}
\end{block}
\citate{L. Pezz\'e \& A. Smerzi, PRL \textbf{102}, 100401 (2009)}
\citate{Z. Zhang \& L.-M. Duan, NJP \textbf{16}, 103037 (2014)}
\citate{\textbf{I.A.}, B. L\"ucke, J. Peise, C. Klempt \& G. Toth, NJP \textbf{17}, 083027 (2015)}
}
\only<4->{
\item The archetypical criteria that shows \emph{\color{blue}metrologically useful entanglement}.
\only<4>{
\vspace{14px}
\[ F_Q[\varrho,J_z]\geq \frac{\expect{J_x}}{\varian{J_z}} \]
\citate{L. Pezz\'e \& A. Smerzi, PRL \textbf{102}, 100401 (2009)}
\vspace{22px}
\vspace{40px}
}
}
\only<5>{
\item It is essential either to \emph{\color{blue} verify them} or to \emph{\color{blue} find new ones} for different set of expectation values.
\vspace{10px}
\only<5> {
\begin{figure}
\includegraphics[height=58px]{img/time-to-work.png}
\end{figure}
}
\vspace{10px}
}
\end{itemize}
\end{frame}
\section[QFI based on expectation values]{QFI based on expectation values: Are they optimal?}
\begin{frame}
\tableofcontents[currentsection]
\end{frame}
\begin{frame}
\frametitle{The non-trivial exercise of computing the qFI}
\begin{itemize}
\item<1-> Different forms of the qFI
\begin{block}
{}
\small
\[
F_Q[\varrho,J_z]=2 \sum_{\lambda,\gamma} \frac{(p_\lambda-p_\gamma)^2}{p_\lambda+p_\gamma} |\braOket{\lambda}{J_z}{\gamma}|^2
\]
\hspace{10px}Alternatively, as convex roof
\[
F_Q[\varrho,J_z]=\min_{\{p_k,\ket{\Psi_k}\}} 4\sum_k p_k \varian{J_z}_{\ket{\Psi_k}}
\]
\end{block}
\citate{M.G.A. Paris, Int. J. Quant. Inf. \textbf{7}, 125 (2009)}
\citate{G. T\'oth \& D. Petz, PRA \textbf{87}, 032324 (2013)}
\citate{S. Yu, arXiv:1302.5311}
\vspace{2px}
\item<2-> For pure states it's \emph{\color{blue}extremely simple}
{\small
\[
F_Q[\varrho,J_z] = 4\varian{J_z}
\]
}
\end{itemize}
\end{frame}
\subsection{Optimisation problem}
\begin{frame}
\frametitle{Optimisation based on the Legendre Transform}
\begin{itemize}
\item When $g(\varrho)$ is a \emph{\color{blue} convex roof}
\begin{block}
{}
{\small
\vspace{8px}
\[
g(\varrho)\geq\mathcal{B}(w:=\tr{\varrho W}) = \sup_{r} \big( r w - \sup_{\ket{\psi}} [ r\expect{W} - g(\ket{\psi}) ] \big).
\]}
\end{block}
\end{itemize}
\citate{O. G\"uhne, M. Reimpell \& R.F. Werner, PRL \textbf{98}, 110502 (2007)}
\citate{J. Eisert, F.G.S.L. Brand\~ao \& K.M.R. Audenaert, NJP \textbf{9}, 46 (2007)}
\end{frame}
\begin{frame}
\begin{block}
{Optimisation for the qFI}
\vspace{4px}
\hspace{10px}The \emph{\color{blue} simplicity} of qFI for pure states leads to
{\small
\[
\mathcal{F}(w) = \sup_{r} \big( r w - {\color{blue}\sup_{\mu} [ \lambda_{\max} ( r W - 4(J_z-{\color{blue}\mu})^2 ) ]} \big).
\]}
\hspace{10px}For more parameters
{\small
\[
\mathcal{F}(\mathbf{w}) = \sup_{\mathbf{r}} \big( \mathbf{r}\cdot \mathbf{w} - {\color{blue}\sup_{\mu} [ \lambda_{\max} ( \mathbf{r}\cdot \mathbf{W} - 4(J_z-{\color{blue}\mu})^2 ) ]} \big).
\]}
\vspace{-4px}
\end{block}
\citate{\textbf{I.A.}, M. Kleinmann, O. G\"uhne \& G. T\'oth, arXiv:1511.05203}
\end{frame}
\section{Case study}
\begin{frame}
\tableofcontents[currentsection]
\end{frame}
\subsection{Fidelities}
\begin{frame}
\begin{itemize}
\item<1-> Measuring $F_{\rm GHZ}$ and $F_{\rm Dicke}$
\citate{R. Augusiak {\it et al.}, arXiv:1506.08837 (2015)}
\vspace{10px}
\onslide<2->{
\begin{figure}
\includegraphics[height=110px]{img/lb-ghzfidelity.pdf}
\hspace{20px}
\includegraphics[height=110px]{img/lb-dickefidelity}
\end{figure}
\vspace{-10px}
}
\item<3-> For fidelity of GHZ $\implies$ \emph{\color{blue}analytic solution}
\end{itemize}
\onslide<3>{\begin{block}
{}
\[
\mathcal{F}=\Theta(F_{\rm GHZ}-0.5)(2F_{\rm GHZ}-1)^2 N^2
\]
\vspace{-12px}
\end{block}}
\end{frame}
\subsection{Spin-squeezed states}
\begin{frame}
\frametitle{Measuring $\expect{J_z}$ and $\varian{J_x}$ for Spin Squeezed States}
\begin{itemize}
\item<1-> 3 operators {\color{blue}$\{ J_z,J_x,J_x^2 \}$}
\vspace{5px}
\item<2-> Reducing one dimension of $\mathcal{F}$ on the $\expect{J_x}$ direction
\begin{block}{}
\[\mathcal{F} \geq \mathcal{F}(\expect{J_x}=0)\]
\[\Downarrow\]
\[\mathcal{F}(\expect{J_z},{\color{blue}\varian{J_x}}) := \mathcal{F}(\expect{J_z},{\color{blue}\expect{J_x^2}})
\]
\vspace{-12px}
\end{block}
\vspace{5px}
\item<3-> Pezze-Smerzi bound, $F_Q\geq \expect{J_z}^2/\varian{J_x}$, can be verified.
\end{itemize}
\end{frame}
\begin{frame}
\begin{itemize}
\item 4-particle system
\end{itemize}
\begin{figure}
\includegraphics[height=120px]{img/lb-spsq.pdf}
\hspace{15px}
\includegraphics[height=120px]{img/4thparameter-spsq.pdf}
\end{figure}
{\color{blue} Left}: For $\varian{J_x}<1.5$ it almost coincides with the P-S bound $F_Q\geq \expect{J_z}^2/\varian{J_x}$. {\color{blue} Right}: The measurement of $\expect{J_x^4}$ improves the bound.
\citate{\textbf{I.A.}, M. Kleinmann, O. G\"une \& G. T\'oth, arXiv:1511.05203}
\end{frame}
\begin{frame}
\frametitle{Scaling the result for large systems}
{\small Experimental setup $\rightarrow$ \citate{C. Gross {\it et al.}, Nature {\bf 464}, 1165 (2010)}}
\begin{block}
{}
\[
N = {\color{red}2300}\qquad \xi^2_{\rm s} =-8.2{\rm dB}=0.1514
\]
\vspace{-12px}
\end{block}
\begin{itemize}
\item<2-> We choose
\[ \expect{J_z} = 0.85 \frac{N}{2}
\]
\item<2-> P-S bound results is
\[
\frac{F_Q}{N} \geq \frac{1}{\xi_{\rm s}^2} = 6.605
\]
\end{itemize}
\end{frame}
\begin{frame}
\begin{itemize}
\item Starting from \emph{\color{blue}small systems}, and assuming bosonic symmetry.
\vspace{5px}
\item The results obtained with our method \emph{\color{blue}converge} to P-S bound!
\end{itemize}
\begin{figure}
\includegraphics[height=130px]{img/scaling-spsq.pdf}
\end{figure}
\end{frame}
\subsection{Unpolarised Dicke states}
\begin{frame}
\frametitle{Metrology with unpolarised Dicke states}
\begin{itemize}
\item<1-> $\color{blue}\{J_x^2,J_y^2,J_z^2\}$; Experimental constraint: $\expect{J_x^2}=\expect{J_y^2}$.
\end{itemize}
\onslide<2>{
\begin{figure}
\includegraphics[height=120px]{img/upperboundary-dicke.pdf}
\end{figure}
{\color{blue}Figure:} For $\sum_l \expect{J_l^2} = \tfrac{N}{2} (\tfrac{N}{2}+1)$, {i.e.} \emph{\color{blue}bosonic symmetry}, and 6-particle system.
}
\end{frame}
\begin{frame}
\frametitle{Realistic characterisation of Dicke state}
{\small Experiment $\rightarrow$}
\citate{B. L\"ucke {\it et al.}, PRL \textbf{112}, 155304 (2014)}
\begin{block}{}
\vspace{-1px}
\bea
&N ={\color{red} 7900} \hspace{60px} \expect{J_z^2}=112\pm 31 &
\nnnl\nnnl
&\expect{J_x^2}=\expect{J_y^2} = 6 \times 10^6 \pm 0.6\times 10^6 &\nnnl
\nonumber
\eea
\end{block}
\begin{itemize}
\item For that large system, we start from {\color{blue}small ones} similar to the spin-squeezed states.
\end{itemize}
\end{frame}
\begin{frame}
\begin{itemize}
\item Numerical lower bound.
\end{itemize}
\vspace{-10px}
\begin{figure}
\includegraphics[height=120px]{img/asymptoticapproach-dicke.pdf}
\end{figure}
Similarly to the spin-squeezed states, the bound \emph{\color{blue}converges quickly}.
\citate{\textbf{I.A.}, M. Kleinmann, O. G\"une \& G. T\'oth, arXiv:1511.05203}
\end{frame}
\section{Conclusion and outlook}
\begin{frame}
\frametitle{Conclusion and Outlook}
\begin{enumerate}
\item<1-> We prove that for realistic cases \emph{\color{blue}the optimisation is feasible}.
\vspace{5px}
\item<2-> We used \emph{\color{blue}our approach to verify} that the P-S bound is tight.
\vspace{5px}
\item<3-> We have shown that the lower bounds can be \emph{\color{blue}improved with extra constraints}.
\vspace{5px}
\item<4-> For large systems the \emph{\color{blue}optimisation method can be complemented} with scaling considerations.
\vspace{5px}
\item<5-> The \emph{\color{blue}method very versatile} and it can be used in many other situations.
\end{enumerate}
\end{frame}
\setbeamertemplate{navigation symbols}{}{%
}
\section*{}
\begin{frame}
\emph{\LARGE Thank you for your attention!}
\vspace{15px}
Preprint $\rightarrow$ arXiv:1511.05203
\vspace{10px}
Groups' home pages
\hspace{15px} $\rightarrow$ \emph{\color{blue} https://sites.google.com/site/gedentqopt}
\hspace{15px} $\rightarrow$ \emph{\color{blue} http://www.physik.uni-siegen.de/tqo/}
\vspace{10px}
\begin{figure}
\includegraphics[height=60px]{img/authors/iagoba.jpg}
\hspace{10px}
\includegraphics[height=60px]{img/authors/matthias.jpg}
\hspace{10px}
\includegraphics[height=60px]{img/authors/otfried.jpg}
\hspace{10px}
\includegraphics[height=60px]{img/authors/geza.jpg}
\end{figure}
\vspace{-25px}
\begin{center}
iagoba \hspace{16px}
matthias \hspace{16px}
otfried \hspace{30px}
g\'eza {\color{white}>}
\end{center}
\end{frame}
\end{document}