-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathCTCLIPTrainer.py
387 lines (292 loc) · 12.5 KB
/
CTCLIPTrainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
from pathlib import Path
from shutil import rmtree
from datetime import timedelta
from transformer_maskgit.optimizer import get_optimizer
from transformers import BertTokenizer, BertModel
from eval import evaluate_internal, plot_roc, accuracy, sigmoid, bootstrap, compute_cis
from sklearn.metrics import classification_report, confusion_matrix, multilabel_confusion_matrix, f1_score, accuracy_score
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader, random_split
from torch.utils.data.distributed import DistributedSampler
from data import CTReportDataset
from data_inference import CTReportDatasetinfer
import numpy as np
import pandas as pd
import tqdm
from einops import rearrange
import accelerate
from accelerate import Accelerator
from accelerate import DistributedDataParallelKwargs
from accelerate.utils import InitProcessGroupKwargs
import math
import torch.optim.lr_scheduler as lr_scheduler
from ct_clip import CTCLIP
import os
# helpers
def apply_softmax(array):
"""
Applies softmax function to a torch array.
Args:
array (torch.Tensor): Input tensor array.
Returns:
torch.Tensor: Tensor array after applying softmax.
"""
softmax = torch.nn.Softmax(dim=0)
softmax_array = softmax(array)
return softmax_array
def tensor_to_nifti(tensor, path, affine=np.eye(4)):
"""
Save tensor as a NIfTI file.
Args:
tensor (torch.Tensor): The input tensor with shape (D, H, W) or (C, D, H, W).
path (str): The path to save the NIfTI file.
affine (np.ndarray, optional): The affine matrix for the NIfTI file. Defaults to np.eye(4).
"""
tensor = tensor.cpu()
if tensor.dim() == 4:
# Assume single channel data if there are multiple channels
if tensor.size(0) != 1:
print("Warning: Saving only the first channel of the input tensor")
tensor = tensor.squeeze(0)
tensor=tensor.swapaxes(0,2)
numpy_data = tensor.detach().numpy().astype(np.float32)
nifti_img = nib.Nifti1Image(numpy_data, affine)
nib.save(nifti_img, path)
def exists(val):
return val is not None
def noop(*args, **kwargs):
pass
def cycle(dl):
while True:
for data in dl:
yield data
def yes_or_no(question):
answer = input(f'{question} (y/n) ')
return answer.lower() in ('yes', 'y')
def accum_log(log, new_logs):
for key, new_value in new_logs.items():
old_value = log.get(key, 0.)
log[key] = old_value + new_value
return log
class CosineAnnealingWarmUpRestarts(lr_scheduler._LRScheduler):
def __init__(self, optimizer, T_0, T_mult=1, eta_max=0.1, T_warmup=10000, gamma=1.0, last_epoch=-1):
self.T_0 = T_0
self.T_mult = T_mult
self.eta_max = eta_max
self.T_warmup = T_warmup
self.gamma = gamma
self.T_cur = 0
self.lr_min = 0
self.iteration = 0
super(CosineAnnealingWarmUpRestarts, self).__init__(optimizer, last_epoch)
def get_lr(self):
if self.iteration < self.T_warmup:
lr = self.eta_max * self.iteration / self.T_warmup
else:
self.T_cur = self.iteration - self.T_warmup
T_i = self.T_0
while self.T_cur >= T_i:
self.T_cur -= T_i
T_i *= self.T_mult
self.lr_min = self.eta_max * (self.gamma ** self.T_cur)
lr = self.lr_min + 0.5 * (self.eta_max - self.lr_min) * \
(1 + math.cos(math.pi * self.T_cur / T_i))
self.iteration += 1
return [lr for _ in self.optimizer.param_groups]
def step(self, epoch=None):
if epoch is None:
epoch = self.last_epoch + 1
self.last_epoch = epoch
self._update_lr()
self._update_T()
def _update_lr(self):
self.optimizer.param_groups[0]['lr'] = self.get_lr()[0]
def _update_T(self):
if self.T_cur == self.T_0:
self.T_cur = 0
self.lr_min = 0
self.iteration = 0
self.T_0 *= self.T_mult
self.eta_max *= self.gamma
class CTClipTrainer(nn.Module):
def __init__(
self,
CTClip: CTCLIP,
*,
num_train_steps,
batch_size,
data_train = "train",
data_valid = "valid",
reports_file_train = "data_reports.xslx",
reports_file_valid = "data_reports.xslx",
labels = "labels.csv",
tokenizer = None,
lr = 1.25e-6,
wd = 0.,
max_grad_norm = 0.5,
save_results_every = 1000,
save_model_every = 1000 ,
results_folder = '/shares/menze.dqbm.uzh/ihamam/ctclip/',
num_workers = 8,
accelerate_kwargs: dict = dict()
):
super().__init__()
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=36000))
self.accelerator = Accelerator(kwargs_handlers=[ddp_kwargs, kwargs], **accelerate_kwargs)
self.CTClip = CTClip
if tokenizer != None:
self.tokenizer=tokenizer
else:
self.tokenizer=BertTokenizer.from_pretrained('microsoft/BiomedVLP-CXR-BERT-specialized',do_lower_case=True)
self.register_buffer('steps', torch.Tensor([0]))
self.num_train_steps = num_train_steps
self.batch_size = batch_size
all_parameters = set(CTClip.parameters())
self.optim = get_optimizer(all_parameters, lr=lr, wd=wd)
self.max_grad_norm = max_grad_norm
self.lr=lr
# Load the pre-trained weights
self.ds = CTReportDataset(data_folder=data_train, csv_file=reports_file_train)
self.valid_ds = CTReportDatasetinfer(data_folder=data_valid, csv_file=reports_file_valid, labels = labels)
self.dl = DataLoader(
self.ds,
num_workers=num_workers,
batch_size=self.batch_size,
shuffle = True,
)
self.valid_dl = DataLoader(
self.valid_ds,
num_workers=num_workers,
batch_size=1,
shuffle = False,
)
# prepare with accelerator
self.dl_iter=cycle(self.dl)
self.valid_dl_iter=cycle(self.valid_dl)
self.device = self.accelerator.device
self.CTClip.to(self.device)
(
self.dl_iter,
self.valid_dl_iter,
self.CTClip,
self.optim,
) = self.accelerator.prepare(
self.dl_iter,
self.valid_dl_iter,
self.CTClip,
self.optim,
)
self.save_model_every = save_model_every
self.save_results_every = save_results_every
self.results_folder = Path(results_folder)
if len([*self.results_folder.glob('**/*')]) > 0 and yes_or_no('do you want to clear previous experiment checkpoints and results?'):
rmtree(str(self.results_folder))
self.results_folder.mkdir(parents=True, exist_ok=True)
def save(self, path):
if not self.accelerator.is_local_main_process:
return
pkg = dict(
model=self.accelerator.get_state_dict(self.CTClip),
optim=self.optim.state_dict(),
)
torch.save(pkg, path)
def load(self, path):
path = Path(path)
assert path.exists()
pkg = torch.load(path)
CTClip = self.accelerator.unwrap_model(self.CTClip)
CTClip.load_state_dict(pkg['model'])
self.optim.load_state_dict(pkg['optim'])
def print(self, msg):
self.accelerator.print(msg)
@property
def is_main(self):
return self.accelerator.is_main_process
def train_step(self):
device = self.device
steps = int(self.steps.item())
self.CTClip.train()
# logs
logs = {}
# update CTClip model
video, text = next(self.dl_iter)
print(video.shape)
device=self.device
video=video.to(device)
mask = torch.ones((video.shape[0], video.shape[2])).bool().to(device)
#text = text.to(device)
text = list(text)
text_tokens=self.tokenizer(text, return_tensors="pt", padding="max_length", truncation=True, max_length=512).to(device)
#video = video
with self.accelerator.autocast():
loss = self.CTClip(text_tokens, video, return_loss=True, device=device)
self.accelerator.backward(loss)
accum_log(logs, {'loss': loss.item()})
if exists(self.max_grad_norm):
self.accelerator.clip_grad_norm_(self.CTClip.parameters(), self.max_grad_norm)
self.optim.step()
self.optim.zero_grad()
self.print(f"{steps}: loss: {logs['loss']}")
if self.is_main and not (steps % self.save_results_every):
with torch.no_grad():
models_to_evaluate = ((self.CTClip, str(steps)),)
for model, filename in models_to_evaluate:
model.eval()
predictedall=[]
realall=[]
#Fast inference on 100 images
for i in range(10):
print("test")
valid_data, text, onehotlabels, name_acc = next(self.valid_dl_iter)
valid_data = valid_data.to(device)
if "module" in model.__dict__:
model = model.module
pathologies = ['Medical material','Arterial wall calcification', 'Cardiomegaly', 'Pericardial effusion','Coronary artery wall calcification', 'Hiatal hernia','Lymphadenopathy', 'Emphysema', 'Atelectasis', 'Lung nodule','Lung opacity', 'Pulmonary fibrotic sequela', 'Pleural effusion', 'Mosaic attenuation pattern','Peribronchial thickening', 'Consolidation', 'Bronchiectasis','Interlobular septal thickening']
plotdir = str(self.results_folder / f'CTClip_{steps}' )
plotdir = plotdir + "/"
Path(plotdir).mkdir(parents=True, exist_ok=True)
predictedlabels=[]
for pathology in pathologies:
text = [f"There is {pathology}.", f"There is no {pathology}."]
text_tokens=self.tokenizer(
text, return_tensors="pt", padding="max_length", truncation=True, max_length=512).to(device)
output = model(text_tokens, valid_data, device=device)
output = apply_softmax(output)
print(output)
append_out=output.detach().cpu().numpy()
print(output)
if output[0]>output[1]:
predictedlabels.append(append_out[0])
else:
predictedlabels.append(append_out[0])
predictedall.append(predictedlabels)
realall.append(onehotlabels.detach().cpu().numpy()[0])
# Print and save classification report
realall=np.array(realall)
predictedall=np.array(predictedall)
dfs=evaluate_internal(predictedall,realall,pathologies, plotdir)
realall = np.rint(realall).astype(int)
predictedall = np.rint(predictedall).astype(int)
print('Test F1 Accuracy: ', f1_score(realall, predictedall,average='micro'))
print('Test Flat Accuracy: ', accuracy_score(realall.flatten(), predictedall.flatten()),'\n')
writer = pd.ExcelWriter(f'{plotdir}aurocs.xlsx', engine='xlsxwriter')
dfs.to_excel(writer, sheet_name='Sheet1', index=False)
writer.close()
del output
# save model every so often
if self.is_main and not (steps % self.save_model_every):
model_path = str(self.results_folder / f'CTClip.{steps}.pt')
state_dict=self.accelerator.get_state_dict(self.CTClip, unwrap=False)
self.accelerator.save(state_dict, model_path)
self.print(f'{steps}: saving model to {str(self.results_folder)}')
self.steps += 1
return logs
def train(self, log_fn=noop):
device = next(self.CTClip.parameters()).device
device=torch.device('cuda')
while self.steps < self.num_train_steps:
logs = self.train_step()
log_fn(logs)
self.print('training complete')