forked from szad670401/HyperLPR
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmulti_demo.py
69 lines (58 loc) · 2.9 KB
/
multi_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#coding=utf-8
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
import os
import time
import HyperLPRLite as pr
import cv2
import argparse
import numpy as np
from PIL import ImageFont
from PIL import Image
from PIL import ImageDraw
fontC = ImageFont.truetype("./Font/platech.ttf", 14, 0)
def drawRectBox(image,rect,addText):
cv2.rectangle(image, (int(rect[0]), int(rect[1])), (int(rect[0] + rect[2]), int(rect[1] + rect[3])), (0,0, 255), 2,cv2.LINE_AA)
cv2.rectangle(image, (int(rect[0]-1), int(rect[1])-16), (int(rect[0] + 115), int(rect[1])), (0, 0, 255), -1,
cv2.LINE_AA)
img = Image.fromarray(image)
draw = ImageDraw.Draw(img)
draw.text((int(rect[0]+1), int(rect[1]-16)), addText.decode("utf-8"), (255, 255, 255), font=fontC)
imagex = np.array(img)
return imagex
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Multiple rec demo')
parser.add_argument('--detect_parent_path', action='store', dest='detect_parent_path')
parser.add_argument('--cascade_model_path', action='store', default='model/cascade.xml')
parser.add_argument('--mapping_vertical_model_path', action='store', default='model/model12.h5')
parser.add_argument('--ocr_plate_model_path', action='store', default='model/ocr_plate_all_gru.h5')
parser.add_argument('--save_result_flag', action='store', default='True')
parser.add_argument('--plot_result_flag', action='store', default='True')
parser.add_argument('--save_path', action='store', default=None)
args = parser.parse_args()
model = pr.LPR(args.cascade_model_path, args.mapping_vertical_model_path, args.ocr_plate_model_path)
for filename in os.listdir(args.detect_parent_path):
path = os.path.join(args.detect_parent_path, filename)
if path.endswith(".jpg") or path.endswith(".png"):
grr = cv2.imread(path)
t0 = time.time()
image = grr
for pstr, confidence, rect in model.SimpleRecognizePlateByE2E(grr):
if confidence > 0.7:
pstr = pstr.encode('utf-8')
image = drawRectBox(image, rect, pstr + " " + str(round(confidence, 3)))
print "plate_str:"
print pstr
print "plate_confidence"
print confidence
t = time.time() - t0
print "Image size :" + str(grr.shape[1]) + "x" + str(grr.shape[0]) + " need " + str(
round(t * 1000, 2)) + "ms"
if args.plot_result_flag == 'True' or args.plot_result_flag == 'true':
cv2.imshow("image", image)
cv2.waitKey(500)
if args.save_result_flag == 'True' or args.save_result_flag == 'true':
(filepath, tempfilename) = os.path.split(filename)
(name, extension) = os.path.splitext(tempfilename)
cv2.imwrite(args.save_path + name + ".png", image)