Skip to content

Latest commit

 

History

History
38 lines (33 loc) · 886 Bytes

setup.md

File metadata and controls

38 lines (33 loc) · 886 Bytes

启动简介(setup)

Python 依赖

  • Keras (>2.0.0)
  • Theano(>0.9) or Tensorflow(>1.1.x)
  • Numpy (>1.10)
  • Scipy (0.19.1)
  • OpenCV(>3.0)
  • Scikit-image (0.13.0)
  • PIL

方案1: conda建立运行环境并安装依赖

需要安装Anaconda

$ conda create -n HyperLPR python=2.7
$ conda install pillow
$ conda install scikit-image
$ conda install opencv=3.3
$ conda install tensorflow
$ conda install keras

方案2: pip安装依赖

先安装python, pip

$ sudo apt-get install python
$ wget https://bootstrap.pypa.io/get-pip.py 
$ sudo python get-pip.py

再安装依赖

类似上面的安装命令

在Hadoop环境下,按照上述步骤安装依赖后,git该项目

$ git clone https://github.com/icepoint666/HyperLPR.git

接下来通过hadoop的java文件,调用demo.py, 输入参数图片文件名, 输出车牌字符串