This repository has been archived by the owner on Jun 28, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
205 lines (164 loc) · 6.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""
Deep Orientation Estimation Training
"""
import argparse
import os
import sys
import torch
import torch.optim as optim
import torchvision.transforms as transforms
import yaml
from tensorboardX import SummaryWriter
import data_loaders
import modules.network
from modules import BinghamLoss, BinghamMixtureLoss, \
VonMisesLoss, MSELoss, CosineLoss
from training import Trainer
torch.manual_seed(0)
DEFAULT_CONFIG = os.path.dirname(__file__) + "configs/upna_train.yaml"
LOSS_FUNCTIONS = {'mse': MSELoss,
'bingham': BinghamLoss,
'bingham_mdn': BinghamMixtureLoss,
'von_mises': VonMisesLoss,
'cosine': CosineLoss}
def get_dataset(config):
""" Returns the training data using the provided configuration."""
data_loader = config["data_loader"]
size = data_loader["input_size"]
data_transforms = transforms.Compose([
transforms.CenterCrop(600),
transforms.Resize((size, size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
data_transforms_idiap = transforms.Compose([
transforms.Resize((size, size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
data_transforms_depth = transforms.Compose([
transforms.Resize((size, size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485], std=[0.229])
])
if data_loader["name"] == "UPNAHeadPose":
dataset = data_loaders.UpnaHeadPoseTrainTest(
data_loader["config"], data_transforms)
train_dataset = dataset.train
elif data_loader["name"] == "IDIAP":
dataset = data_loaders.IDIAPTrainTest(data_loader["config"],
data_transforms_idiap)
train_dataset = dataset.train
elif data_loader["name"] == "T_Less":
dataset = data_loaders.TLessTrainTest(
data_loader["config"], data_transforms_idiap)
train_dataset = dataset.train
else:
sys.exit("Unknown data loader " + config['data_loader']["name"] + ".")
training_size = int(len(train_dataset) * 0.90)
val_size = len(train_dataset) - training_size
train_dataset, val_dataset = torch.utils.data.random_split(train_dataset, [training_size, val_size])
return train_dataset, val_dataset
def main():
""" Loads arguments and starts training."""
parser = argparse.ArgumentParser(description="Deep Orientation Estimation")
parser.add_argument('-c', '--config', default=DEFAULT_CONFIG, type=str)
args = parser.parse_args()
config_file = args.config
# Load config
assert os.path.exists(args.config), "Config file {} does not exist".format(
args.config)
with open(config_file) as fp:
config = yaml.load(fp)
if not os.path.exists(config["train"]["save_dir"]):
os.makedirs(config["train"]["save_dir"])
device = torch.device(
config["train"]["device"] if torch.cuda.is_available() else "cpu")
print("Using device: {}".format(device))
# Build model architecture
num_channels = config["train"]["num_channels"] or 3
model_name = config["train"]["model"] or 'vgg11'
num_classes = config["train"].get("num_outputs", None)
model = modules.network.get_model(name=model_name,
pretrained=True,
num_channels=num_channels,
num_classes=num_classes)
model.to(device)
print("Model name: {}".format(model_name))
# optionally resume from checkpoint
resume = config["train"]["resume"]
if resume:
if os.path.isfile(resume):
print("Loading checkpoint {}".format(resume))
checkpoint = torch.load(resume)
start_epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint["state_dict"])
else:
start_epoch = 0
print("No checkpoint found at {}".format(resume))
else:
start_epoch = 0
# Get dataset
train_dataset, test_dataset = get_dataset(config)
b_size = config["train"]["batch_size"] or 4
# This should not be necessary but it surprisingly is. In the presence of a
# GPU, PyTorch tries to allocate GPU memory when pin_memory is set to true
# in the data loader. This happens even if training is to happen on CPU and
# all objects are on CPU.
if config["train"]["device"] != "cpu":
use_memory_pinning = True
else:
use_memory_pinning = False
validationloader = torch.utils.data.DataLoader(
test_dataset, batch_size=b_size, shuffle=True, num_workers=1,
pin_memory=use_memory_pinning)
trainloader = torch.utils.data.DataLoader(
train_dataset, batch_size=b_size, shuffle=True, num_workers=1,
pin_memory=use_memory_pinning)
print("batch size: {}".format(b_size))
# Define loss function (criterion) and optimizer
learning_rate = config["train"]["learning_rate"] or 0.0001
loss_function_name = config["train"]["loss_function"]
if "loss_parameters" in config["train"]:
loss_parameters = config["train"]["loss_parameters"]
else:
loss_parameters = None
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
print(optimizer)
# Set up tensorboard writer
writer_train = SummaryWriter(
"runs/{}/training".format(config["train"]["save_as"]))
writer_val = SummaryWriter(
"runs/{}/validation".format(config["train"]["save_as"]))
# Train the network
num_epochs = config["train"]["num_epochs"] or 2
print("Number of epochs: {}".format(num_epochs))
if loss_parameters is not None:
loss_function = LOSS_FUNCTIONS[loss_function_name](**loss_parameters)
else:
loss_function = LOSS_FUNCTIONS[loss_function_name]()
if "floating_point_type" in config["train"]:
floating_point_type = config["train"]["floating_point_type"]
else:
floating_point_type = "float"
trainer = Trainer(device, floating_point_type)
for epoch in range(start_epoch, num_epochs):
trainer.train_epoch(
trainloader, model, loss_function, optimizer,
epoch, writer_train, writer_val, validationloader)
save_checkpoint(
{'epoch': epoch + 1, 'state_dict': model.state_dict()},
filename=os.path.join(config["train"]["save_dir"],
'checkpoint_{}_{}.tar'.format(
model_name, epoch))
)
print('Finished training')
def save_checkpoint(state, filename='checkpoint.pth.tar'):
"""
Save the training model
"""
torch.save(state, filename)
if __name__ == '__main__':
main()