forked from sj-li/MS-TCN2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
100 lines (79 loc) · 3.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/python2.7
import torch
from model import Trainer
from batch_gen import BatchGenerator
import os
import argparse
import random
from clearml import Task, Logger
task = Task.init(project_name='ProjectCV', task_name='Test')
# task.connect(params_dictionary)
task.set_user_properties(
{"name": "backbone", "description": "network type", "value": "mstcn++"}
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seed = 1538574472
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
parser = argparse.ArgumentParser()
parser.add_argument('--action', default='trainAndInfer')
parser.add_argument('--dataset', default="gtea")
parser.add_argument('--split', default='1')
parser.add_argument('--features_dim', default='1280', type=int)
parser.add_argument('--bz', default='1', type=int)
parser.add_argument('--lr', default='0.0005', type=float)
parser.add_argument('--num_f_maps', default='64', type=int)
# Need input
parser.add_argument('--num_epochs', type=int)
parser.add_argument('--num_layers_PG', type=int)
parser.add_argument('--num_layers_R', type=int)
parser.add_argument('--num_R', type=int)
args = parser.parse_args()
num_epochs = args.num_epochs
features_dim = args.features_dim
bz = args.bz
lr = args.lr
num_layers_PG = args.num_layers_PG
num_layers_R = args.num_layers_R
num_R = args.num_R
num_f_maps = args.num_f_maps
# use the full temporal resolution @ 15fps
sample_rate = 1
# sample input features @ 15fps instead of 30 fps
# for 50salads, and up-sample the output to 30 fps
if args.dataset == "50salads":
sample_rate = 2
# vid_list_file = "./data/"+args.dataset+"/splits/train.split"+args.split+".bundle"
vid_list_file = "/datashare/APAS/folds/valid 0.txt"
# vid_list_file_tst = "./data/"+args.dataset+"/splits/test.split"+args.split+".bundle"
vid_list_file_tst = "/datashare/APAS/folds/test 0.txt"
# features_path = "./data/"+args.dataset+"/features/"
features_path = "/datashare/APAS/features/fold0/"
# gt_path = "./data/"+args.dataset+"/groundTruth/"
gt_path = '/datashare/APAS/transcriptions_gestures/'
# mapping_file = "./data/"+args.dataset+"/mapping.txt"
mapping_file = "/datashare/APAS/mapping_gestures.txt"
# model_dir = "./models/"+args.dataset+"/split_"+args.split
model_dir = "./models/test"
# results_dir = "./results/"+args.dataset+"/split_"+args.split
results_dir = "./results/test"
if not os.path.exists(model_dir):
os.makedirs(model_dir)
if not os.path.exists(results_dir):
os.makedirs(results_dir)
file_ptr = open(mapping_file, 'r')
actions = file_ptr.read().split('\n')[:-1]
file_ptr.close()
actions_dict = dict()
for a in actions:
actions_dict[a.split()[1]] = int(a.split()[0])
num_classes = len(actions_dict)
trainer = Trainer(num_layers_PG, num_layers_R, num_R, num_f_maps, features_dim, num_classes, "fold0", "fold0")
if args.action == "train":
batch_gen = BatchGenerator(num_classes, actions_dict, gt_path, features_path, sample_rate)
batch_gen.read_data(vid_list_file)
trainer.train(model_dir, batch_gen, num_epochs=num_epochs, batch_size=bz, learning_rate=lr, device=device)
if args.action == "predict":
trainer.predict(model_dir, results_dir, features_path, vid_list_file_tst, num_epochs, actions_dict, device, sample_rate)