-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfedavg.py
executable file
·339 lines (293 loc) · 13.9 KB
/
fedavg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""FedAvg"""
import os, argparse, time
import numpy as np
import wandb
import torch
from torch import nn, optim
# federated
from federated.learning import train, test
# utils
from utils.utils import set_seed, AverageMeter, CosineAnnealingLR, \
MultiStepLR, LocalMaskCrossEntropyLoss
from utils.config import CHECKPOINT_ROOT
# NOTE import desired federation
from federated.core import _Federation as Federation
from federated.core import AdversaryCreator
def render_run_name(args, exp_folder):
"""Return a unique run_name from given args."""
if args.model == 'default':
args.model = {'Digits': 'digit', 'Cifar10': 'preresnet18', 'DomainNet': 'alex'}[args.data]
run_name = f'{args.model}'
if args.width_scale != 1.: run_name += f'x{args.width_scale}'
run_name += Federation.render_run_name(args)
# log non-default args
if args.seed != 1: run_name += f'__seed_{args.seed}'
# opt
if args.lr_sch != 'none': run_name += f'__lrs_{args.lr_sch}'
if args.opt != 'sgd': run_name += f'__opt_{args.opt}'
if args.batch != 32: run_name += f'__batch_{args.batch}'
if args.wk_iters != 1: run_name += f'__wk_iters_{args.wk_iters}'
# slimmable
if args.no_track_stat: run_name += f"__nts"
if args.no_mask_loss: run_name += f'__nml'
# adv train
if args.adv_lmbd > 0:
run_name += f'__at{args.adv_lmbd}'
args.save_path = os.path.join(CHECKPOINT_ROOT, exp_folder)
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
SAVE_FILE = os.path.join(args.save_path, run_name)
return run_name, SAVE_FILE
def get_model_fh(data, model):
if data == 'Digits':
if model in ['digit']:
from nets.models import DigitModel
ModelClass = DigitModel
else:
raise ValueError(f"Invalid model: {model}")
elif data in ['DomainNet']:
if model in ['alex']:
from nets.models import AlexNet
ModelClass = AlexNet
else:
raise ValueError(f"Invalid model: {model}")
elif data == 'Cifar10':
if model in ['preresnet18']: # From heteroFL
from nets.HeteFL.preresne import resnet18
ModelClass = resnet18
else:
raise ValueError(f"Invalid model: {model}")
else:
raise ValueError(f"Unknown dataset: {data}")
return ModelClass
def fed_test(fed, running_model, val_loaders, verbose, adversary=None):
mark = 's' if adversary is None else 'r'
val_acc_list = [None for _ in range(fed.client_num)]
val_loss_mt = AverageMeter()
for client_idx in range(fed.client_num):
fed.download(running_model, client_idx)
# Test
val_loss, val_acc = test(running_model, val_loaders[client_idx], loss_fun, device,
adversary=adversary)
# Log
val_loss_mt.append(val_loss)
val_acc_list[client_idx] = val_acc
if verbose > 0:
print(' {:<19s} Val {:s}Loss: {:.4f} | Val {:s}Acc: {:.4f}'.format(
'User-'+fed.clients[client_idx], mark.upper(), val_loss, mark.upper(), val_acc))
wandb.log({
f"{fed.clients[client_idx]} val_{mark}-acc": val_acc,
}, commit=False)
return val_acc_list, val_loss_mt.avg
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser()
# basic problem setting
parser.add_argument('--seed', type=int, default=1, help='random seed')
parser.add_argument('--data', type=str, default='Digits', help='data name')
parser.add_argument('--model', type=str.lower, default='default', help='model name')
parser.add_argument('--width_scale', type=float, default=1., help='model width scale')
parser.add_argument('--no_track_stat', action='store_true', help='disable BN tracking')
parser.add_argument('--no_mask_loss', action='store_true', help='disable masked loss for class'
' niid')
# control
parser.add_argument('--no_log', action='store_true', help='disable wandb log')
parser.add_argument('--test', action='store_true', help='test the pretrained model')
parser.add_argument('--resume', action='store_true', help='resume training from checkpoint')
parser.add_argument('--verbose', type=int, default=0, help='verbose level: 0 or 1')
# federated
Federation.add_argument(parser)
# optimization
parser.add_argument('--lr', type=float, default=1e-2, help='learning rate')
parser.add_argument('--lr_sch', type=str, default='none', help='learning rate schedule')
parser.add_argument('--opt', type=str.lower, default='sgd', help='optimizer')
parser.add_argument('--iters', type=int, default=300, help='#iterations for communication')
parser.add_argument('--wk_iters', type=int, default=1, help='#epochs in local train')
# adversarial train
parser.add_argument('--adv_lmbd', type=float, default=0.,
help='adv coefficient in [0,1]; default 0 for standard training.')
parser.add_argument('--test_noise', choices=['none', 'LinfPGD'], default='none')
args = parser.parse_args()
set_seed(args.seed)
# set experiment files, wandb
exp_folder = f'FedAvg_{args.data}'
run_name, SAVE_FILE = render_run_name(args, exp_folder)
wandb.init(group=run_name[:120], project=exp_folder,
mode='offline' if args.no_log else 'online',
config={**vars(args), 'save_file': SAVE_FILE})
# /////////////////////////////////
# ///// Fed Dataset and Model /////
# /////////////////////////////////
fed = Federation(args.data, args)
# Data
train_loaders, val_loaders, test_loaders = fed.get_data()
mean_batch_iters = int(np.mean([len(tl) for tl in train_loaders]))
print(f" mean_batch_iters: {mean_batch_iters}")
# Model
ModelClass = get_model_fh(args.data, args.model)
running_model = ModelClass(
track_running_stats=not args.no_track_stat, num_classes=fed.num_classes,
width_scale=args.width_scale,
).to(device)
# adversary
if args.adv_lmbd > 0. or args.test:
make_adv = AdversaryCreator(args.test_noise if args.test else 'LinfPGD')
adversary = make_adv(running_model)
else:
adversary = None
# Loss
if args.pu_nclass > 0 and not args.no_mask_loss: # niid
loss_fun = LocalMaskCrossEntropyLoss(fed.num_classes)
else:
loss_fun = nn.CrossEntropyLoss()
# Use running model to init a fed aggregator
fed.make_aggregator(running_model)
# /////////////////
# //// Resume /////
# /////////////////
# log the best for each model on all datasets
best_epoch = 0
best_acc = [0. for j in range(fed.client_num)]
train_elapsed = [[] for _ in range(fed.client_num)]
start_epoch = 0
if args.resume or args.test:
if os.path.exists(SAVE_FILE):
print(f'Loading chkpt from {SAVE_FILE}')
checkpoint = torch.load(SAVE_FILE)
best_epoch, best_acc = checkpoint['best_epoch'], checkpoint['best_acc']
train_elapsed = checkpoint['train_elapsed']
start_epoch = int(checkpoint['a_iter']) + 1
fed.model_accum.load_state_dict(checkpoint['server_model'])
print('Resume training from epoch {} with best acc:'.format(start_epoch))
for client_idx, acc in enumerate(best_acc):
print(' Best user-{:<10s}| Epoch:{} | Val Acc: {:.4f}'.format(
fed.clients[client_idx], best_epoch, acc))
else:
if args.test:
raise FileNotFoundError(f"Not found checkpoint at {SAVE_FILE}")
else:
print(f"Not found checkpoint at {SAVE_FILE}\n **Continue without resume.**")
# ///////////////
# //// Test /////
# ///////////////
if args.test:
wandb.summary[f'best_epoch'] = best_epoch
# Set up model with specified width
print(f" Test model: {args.model}x{args.width_scale}"
+ ('' if args.test_noise == 'none' else f'with {args.test_noise} noise'))
# Test on clients
test_acc_mt = AverageMeter()
for test_idx, test_loader in enumerate(test_loaders):
fed.download(running_model, test_idx)
_, test_acc = test(running_model, test_loader, loss_fun, device,
adversary=adversary)
print(' {:<11s}| Test Acc: {:.4f}'.format(fed.clients[test_idx], test_acc))
wandb.summary[f'{fed.clients[test_idx]} test acc'] = test_acc
test_acc_mt.append(test_acc)
# Profile model FLOPs, sizes (#param)
from nets.profile_func import profile_model
flops, params = profile_model(running_model, device=device)
wandb.summary['GFLOPs'] = flops / 1e9
wandb.summary['model size (MB)'] = params / 1e6
print('GFLOPS: %.4f, model size: %.4fMB' % (flops / 1e9, params / 1e6))
print(f"\n Average Test Acc: {test_acc_mt.avg}")
wandb.summary[f'avg test acc'] = test_acc_mt.avg
wandb.finish()
exit(0)
# ////////////////
# //// Train /////
# ////////////////
# LR scheduler
if args.lr_sch == 'cos':
lr_sch = CosineAnnealingLR(args.iters, eta_max=args.lr, last_epoch=start_epoch)
elif args.lr_sch == 'multi_step':
lr_sch = MultiStepLR(args.lr, milestones=[150, 250], gamma=0.1, last_epoch=start_epoch)
else:
assert args.lr_sch == 'none', f'Invalid lr_sch: {args.lr_sch}'
lr_sch = None
for a_iter in range(start_epoch, args.iters):
# set global lr
global_lr = args.lr if lr_sch is None else lr_sch.step()
wandb.log({'global lr': global_lr}, commit=False)
# ----------- Train Client ---------------
train_loss_mt, train_acc_mt = AverageMeter(), AverageMeter()
print("============ Train epoch {} ============".format(a_iter))
for client_idx in fed.client_sampler.iter():
start_time = time.process_time()
# Download global model to local
fed.download(running_model, client_idx)
# (Alg 3) Local Train
if args.opt == 'sgd':
optimizer = optim.SGD(params=running_model.parameters(), lr=global_lr,
momentum=0.9, weight_decay=5e-4)
elif args.opt == 'adam':
optimizer = optim.Adam(params=running_model.parameters(), lr=global_lr)
else:
raise ValueError(f"Invalid optimizer: {args.opt}")
train_loss, train_acc = train(
running_model, train_loaders[client_idx], optimizer, loss_fun, device,
max_iter=mean_batch_iters * args.wk_iters if args.partition_mode != 'uni'
else len(train_loaders[client_idx]) * args.wk_iters,
progress=args.verbose > 0,
adversary=adversary, adv_lmbd=args.adv_lmbd,
)
# Upload
fed.upload(running_model, client_idx)
# Log
client_name = fed.clients[client_idx]
elapsed = time.process_time() - start_time
wandb.log({f'{client_name}_train_elapsed': elapsed}, commit=False)
train_elapsed[client_idx].append(elapsed)
train_loss_mt.append(train_loss), train_acc_mt.append(train_acc)
print(f' User-{client_name:<10s} Train | Loss: {train_loss:.4f} |'
f' Acc: {train_acc:.4f} | Elapsed: {elapsed:.2f} s')
wandb.log({
f"{client_name} train_loss": train_loss,
f"{client_name} train_acc": train_acc,
}, commit=False)
# Use accumulated model to update server model
fed.aggregate()
# ----------- Validation ---------------
val_acc_list, val_loss = fed_test(fed, running_model, val_loaders, args.verbose)
if args.adv_lmbd > 0:
print(f' Avg Val SAcc {np.mean(val_acc_list) * 100:.2f}%')
wandb.log({'val_sacc': np.mean(val_acc_list)}, commit=False)
val_racc_list, val_rloss = fed_test(fed, running_model, val_loaders, args.verbose,
adversary=adversary)
print(f' Avg Val RAcc {np.mean(val_racc_list) * 100:.2f}%')
wandb.log({'val_racc': np.mean(val_racc_list)}, commit=False)
val_acc_list = [(1-args.adv_lmbd) * sa_ + args.adv_lmbd * ra_
for sa_, ra_ in zip(val_acc_list, val_racc_list)]
val_loss = (1-args.adv_lmbd) * val_loss + args.adv_lmbd * val_rloss
# Log averaged
print(f' [Overall] Train Loss {train_loss_mt.avg:.4f} Acc {train_acc_mt.avg*100:.1f}%'
f' | Val Acc {np.mean(val_acc_list) * 100:.2f}%')
wandb.log({
f"train_loss": train_loss_mt.avg,
f"train_acc": train_acc_mt.avg,
f"val_loss": val_loss,
f"val_acc": np.mean(val_acc_list),
}, commit=False)
# ----------- Save checkpoint -----------
if np.mean(val_acc_list) > np.mean(best_acc):
best_epoch = a_iter
for client_idx in range(fed.client_num):
best_acc[client_idx] = val_acc_list[client_idx]
if args.verbose > 0:
print(' Best site-{:<10s}| Epoch:{} | Val Acc: {:.4f}'.format(
fed.clients[client_idx], best_epoch, best_acc[client_idx]))
print(' [Best Val] Acc {:.4f}'.format(np.mean(val_acc_list)))
# Save
print(f' Saving the local and server checkpoint to {SAVE_FILE}')
save_dict = {
'server_model': fed.model_accum.state_dict(),
'best_epoch': best_epoch,
'best_acc': best_acc,
'a_iter': a_iter,
'all_domains': fed.all_domains,
'train_elapsed': train_elapsed,
}
torch.save(save_dict, SAVE_FILE)
wandb.log({
f"best_val_acc": np.mean(best_acc),
}, commit=True)