This repository has been archived by the owner on Oct 7, 2024. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
53 lines (40 loc) · 1.66 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import streamlit as st
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
import torch
from PIL import Image
# Load the pre-trained model and tokenizer
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Set the parameters for caption generation
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_step(image):
if image is None:
return []
pixel_values = feature_extractor(images=[image], return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
def main():
st.title("Image Caption Generator")
# Upload an image
uploaded_file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Generate captions
captions = predict_step(image)
if captions:
st.subheader("Generated Captions")
for caption in captions:
st.write(f"- {caption}")
else:
st.write("No captions generated.")
if __name__ == "__main__":
main()