-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathray_hyperpara.py
executable file
·505 lines (397 loc) · 18.4 KB
/
ray_hyperpara.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
"""Main modul for hyperparameter search."""
import collections
import importlib
import inspect
import json
import pathlib
from typing import Any, Dict, Union
import anndata
import numpy as np
import pandas as pd
import ray
import tensorflow as tf
from ray import tune
from ray.tune import progress_reporter as tune_reporters
from sklearn import ensemble, metrics, model_selection
from tensorflow.keras import callbacks
from tensorflow.keras import models as keras_models
from discern import functions, io
from discern import mmd as sc_mmd
from discern.estimators import batch_integration
from discern.estimators import callbacks as custom_callbacks
from discern.estimators import customlayers
def _recursive_update(data, updates):
if not isinstance(data, collections.abc.Mapping) and isinstance(
updates, collections.abc.Mapping):
data = {}
for key, value in updates.items():
if isinstance(value, collections.abc.Mapping):
data[key] = _recursive_update(data.get(key, {}), value)
else:
data[key] = value
return data
def parse_json_search_space(space: Dict[str, Any]) -> Dict[str, Any]:
"""Parse search space from JSON (dict-like) filecontent.
Arguments for functions containing ``log`` are automatically multiplied with np.log(10).
Args:
space (Dict[str, Any]): Parsable-search space.
Returns:
Dict[str, Any]: Parsed search space, can now directly used for search.
"""
if "name" in space and "type" in space and "args" in space:
mod, name = space["type"].rsplit(".", 1)
func = getattr(importlib.import_module(mod), name)
args = space["args"]
if "log" in space["type"]:
args = [np.log(10) * x for x in space["args"]]
if mod.startswith("ray.tune"):
return func(*args)
return func(space["name"], *args)
return {
key: parse_json_search_space(values)
for key, values in space.items()
}
def _generate_cells(model: tf.keras.Model, cells: anndata.AnnData,
output_labels: np.ndarray,
batch_size: int) -> anndata.AnnData:
n_labels_enc = model.wae_model.input_shape['batch_input_enc'][1]
n_labels_dec = model.wae_model.input_shape['batch_input_dec'][1]
labels = tf.one_hot(cells.obs.batch.cat.codes.values.astype(np.int32),
depth=n_labels_enc)
latent, _ = model.generate_latent_codes(counts=cells.X,
batch_labels=labels,
batch_size=batch_size)
olabels = tf.one_hot(output_labels.astype(np.int32), depth=n_labels_dec)
decoded = model.generate_cells_from_latent(latent_codes=latent,
output_batch_labels=olabels,
batch_size=batch_size)
decoded = functions.sample_counts(counts=decoded[0],
probabilities=decoded[1],
var=cells.var,
uns=cells.uns)
decoded = anndata.AnnData(decoded,
obs=cells.obs,
var=cells.var,
uns=cells.uns)
return decoded
class HyperParameterEarlyStopping(custom_callbacks.DelayedEarlyStopping):
"""Tensorflow EarlyStopping without resetting metrics on begin of training.
Args:
See documentation.
"""
# pylint: disable=too-few-public-methods
def __init__(self, *args, **kwargs):
"""Initialize the class."""
super().__init__(*args, **kwargs)
if self.baseline is not None:
self.best = self.baseline
else:
self.best = np.Inf if self.monitor_op == np.less else -np.Inf # pylint: disable=comparison-with-callable
def on_train_begin(self, logs=None):
"""Drop the original on_train_begin function."""
pass # pylint: disable=unnecessary-pass
class RAYHYPER(ray.tune.Trainable):
"""Main object for hyperparameter optimization. Trainable for Ray[Tune].
Contains train methods.
"""
# pylint: disable=abstract-method
def __init__(self, *args, **kwargs):
self.model = None
self.data = None
self.batch_to_int = None
self.train_data = None
self.valid_data = None
self.iterations = None
self.callbacks = None
super().__init__(*args, **kwargs)
def setup(self, config):
self.config['training']["GPU"] = [
i for i, _ in enumerate(ray.get_gpu_ids())
]
expfolder = pathlib.Path(self.config["exp_folder"]).resolve()
self.config['logdir'] = self.logdir
self.config['model']['latent_dim'] = int(
self.config['model']['latent_dim'])
self.config["training"]["seed"] = np.random.randint(1000)
# Writes configuration of the hyperparameters to a parameters.json file.
with pathlib.Path(self.logdir, 'parameters.json').open('w') as file:
json.dump(self.config, file, sort_keys=False, indent=4)
tf.keras.backend.clear_session()
tf.random.set_seed(self.config["training"]["seed"])
functions.set_gpu_and_threads(self.config['training']['parallel_pc'],
self.config['training']["GPU"])
tf.config.optimizer.set_jit(self.config['training']['XLA'])
self.model = batch_integration.DISCERN.from_json(self.config)
self.data = io.DISCERNData.from_folder(
expfolder, batch_size=int(self.config["training"]["batch_size"]))
self.batch_to_int = {
val: key
for key, val in enumerate(self.data.obs.batch.cat.categories)
}
self.model.zeros = self.data.zeros
self.model.build_model(
n_genes=self.data.var_names.size,
n_labels=self.data.obs.batch.cat.categories.size,
scale=self.data.config["total_train_count"])
self.train_data, self.valid_data = self.data.tfdata
self.train_data = self.train_data.repeat().prefetch(
tf.data.experimental.AUTOTUNE)
self.valid_data = self.valid_data.prefetch(
tf.data.experimental.AUTOTUNE)
self.iterations = 0
self.callbacks = [
HyperParameterEarlyStopping(
**self.config['training']["early_stopping"]),
callbacks.TerminateOnNaN()
]
def step(self):
batch_size = int(self.config["training"]["batch_size"])
total = self.data.config["total_train_count"]
res = self.model.wae_model.fit(x=self.train_data,
epochs=self.iterations +
self.config["epochs_per_timestep"],
validation_data=self.valid_data,
callbacks=self.callbacks,
steps_per_epoch=total // batch_size,
initial_epoch=self.iterations,
verbose=0)
self.iterations += self.config["epochs_per_timestep"]
reached_max = self.iterations >= self.config["training"]["max_steps"]
final_results = {
"early_stopped": self.model.wae_model.stop_training,
"reached_max_step": reached_max,
'loss': np.min(res.history.get('val_loss', 500000)),
'mmd': 0.0,
"auc": 0.0,
"mmd_autoencoded": 0.0,
"auc_autoencoded": 0.0,
}
if not np.isfinite(res.history['loss']).all():
final_results.update(dict(mmd=500, loss=500000, auc=100))
return final_results
return self._loss(final_results)
def _loss(self, results):
batch_size = int(self.config["training"]["batch_size"])
sigma = self.data.config["mmd_kernel"]
mmd_data = self.data[self.data.obs.for_mmd]
for i in self.config["batch_to_check"]:
i = self.batch_to_int[i]
decoded_cells = _generate_cells(
self.model, mmd_data,
np.full_like(mmd_data.obs.batch.cat.codes.values, i),
batch_size)
recent = loss(decoded_cells, mmd_data, sigma["all"], i)
results["mmd"] += recent.mmd
results["auc"] += recent.auc
results["mmd_autoencoded"] += recent.mmd_autoencoded
results["auc_autoencoded"] += recent.auc_autoencoded
return results
def save_checkpoint(self, tmp_checkpoint_dir: str):
savedir = pathlib.Path(tmp_checkpoint_dir, "model.hdf5").resolve()
self.model.wae_model.save(str(savedir))
return str(savedir)
def load_checkpoint(self, checkpoint: str):
savedir = pathlib.Path(checkpoint, "model.hdf5").resolve()
self.model.wae_model = keras_models.load_model(
str(savedir),
compile=False,
custom_objects=customlayers.getmembers())
optimizer = self.model.get_optimizer()
self.model.compile(optimizer)
def cleanup(self):
self.data = None
self.train_data = None
self.valid_data = None
self.callbacks = None
self.model = None
tf.keras.backend.clear_session()
importlib.import_module("gc").collect()
def _generate_trainspec(exp_folder: pathlib.Path, train_spec: Dict[str, Any],
batchname_to_check: pd.Series) -> Dict[str, Any]:
with exp_folder.joinpath('parameters.json').open('r') as file:
hparams = json.load(file)
train_spec["config"] = _recursive_update(train_spec["config"], hparams)
train_spec["config"]["exp_folder"] = str(exp_folder)
train_spec["config"]["json_file"] = str(
exp_folder.joinpath('parameters.json'))
n_batches = min(len(batchname_to_check),
train_spec['config'].get('validation_batches', 10))
train_spec["config"]["batch_to_check"] = batchname_to_check.iloc[
0:n_batches].index.tolist()
train_spec["local_dir"] = str(exp_folder)
return train_spec
def _create_progressreporter(
*columns: str,
max_progress_rows: int = 20) -> tune_reporters.CLIReporter:
"""Add a custom metric column, in addition to the default metrics.
Args:
*columns (str): Columns to report.
Note that this must be a metric that is returned in your training results.
max_progress_rows (int, optional): Row limit for command line report.
Defaults to 20.
Returns:
tune_reporters.CLIReporter: Reporter to be used with `tune.run`.
"""
reporter = tune_reporters.CLIReporter(max_progress_rows=max_progress_rows)
for column in columns:
if column not in reporter._metric_columns: # pylint: disable=protected-access
reporter.add_metric_column(column)
return reporter
def create_scheduler(schedulername: str, **initargs: Any) -> Any:
"""Create a scheduler based on the module string.
Args:
schedulername (str): Name of the scheduler,
like `ray.tune.schedulers.AsyncHyperBandScheduler`.
Returns:
Any: A Scheduler.
"""
mod, classname = schedulername.rsplit(".", 1)
scheduler_cls = getattr(importlib.import_module(mod), classname)
valid_args = inspect.getfullargspec(scheduler_cls).args
args = {k: v for k, v in initargs.items() if k in valid_args}
return scheduler_cls(**args)
def create_search_algo(name: str, space: Dict[str, Any],
**initargs: Any) -> Any:
"""Create search algo from string.
Randomsearch requires that all parameters
in the search space are defined as attributes from `ray.tune`.
If using ray.tune.suggest.hyperopt.HyperOptSearch´, your
parameter types should start with `hyperopt.hp.`.
Args:
name (str): Full name of the search algorithm.
Like `Gridsearch` or `ray.tune.suggest.hyperopt.HyperOptSearch`
space (Dict[str, Any]): Search space to be used.
Returns:
Any: The search algorithm (or None for Randomsearch)
"""
if name == "Randomsearch":
return None, space
mod, classname = name.rsplit(".", 1)
initargs.setdefault("space", {})
initargs["space"] = _recursive_update(initargs["space"], space)
searchalgo = getattr(importlib.import_module(mod), classname)
valid_args = inspect.getfullargspec(searchalgo).args
args = {k: v for k, v in initargs.items() if k in valid_args}
return searchalgo(**args), {}
def create_experiment(name: str, searchspace: Dict[str, Any],
**initargs: Any) -> tune.Experiment:
"""Create a Experiment.
Args:
name (str): Name of the experiment.
searchspace (Dict[str, Any]): Search space to use.
**initargs (Any): Initialization arguments.
Returns:
tune.Experiment: [description]
"""
initargs.setdefault("config", dict())
initargs["config"] = _recursive_update(initargs["config"], searchspace)
return tune.Experiment(name, run=RAYHYPER, **initargs)
def tune_hyperparameters(exp_folder: Union[str, pathlib.Path]):
"""Man function for tuning hyperparameters.
Args:
exp_folder (str): Path to the experiments folder.
"""
exp_folder = pathlib.Path(exp_folder).resolve()
with exp_folder.joinpath('hyperparameter_search.json').open('r') as file:
parameter = json.load(file)
ray.init(local_mode=False, **parameter["setup"])
eval_data = anndata.read_h5ad(
exp_folder.joinpath('processed_data', 'concatenated_data.h5ad')).obs
space = parse_json_search_space(parameter["search_space"])
train_spec = _generate_trainspec(
exp_folder, parameter["train_spec"],
eval_data[eval_data['for_mmd']]['batch'].value_counts())
algo, searchspace = create_search_algo(parameter["searcher"].pop("name"),
space=space,
**parameter["searcher"])
scheduler = create_scheduler(parameter["scheduler"].pop("name"),
**parameter["scheduler"])
reporter = _create_progressreporter("early_stopped", "loss", "mmd", "auc")
experiment = create_experiment(train_spec.pop("name"), searchspace,
**train_spec)
tune.run(
experiment, # type: ignore
scheduler=scheduler,
search_alg=algo,
verbose=True,
queue_trials=True,
raise_on_failed_trial=False,
resume=False,
with_server=False,
progress_reporter=reporter)
if "analysis" in parameter:
folder = exp_folder.joinpath(experiment.name)
analysis = tune.Analysis(str(folder))
data = analysis.dataframe(metric=parameter["analysis"]["metric"],
mode=parameter["analysis"]["mode"])
data = data.to_dict(orient="index")
with folder.joinpath("analysis.json").open("w") as file:
json.dump(data, file)
ray.shutdown()
def _scale_cells(adata: anndata.AnnData) -> anndata.AnnData:
if 'fixed_scaling' in adata.uns:
adata = functions.rescale_by_params(adata, adata.uns['fixed_scaling'])
return functions.scale(adata)
LossResults = collections.namedtuple(
"LossResults", ["auc", "mmd", "mmd_autoencoded", "auc_autoencoded"])
def loss(random_cells: anndata.AnnData, valid_cells: anndata.AnnData,
sigma: float, batch_no: int) -> LossResults:
"""Compute several losses.
Losses between random cells and valid cells and calculates the AUC using
random forest classifier and IDR and performs DE gene tests.
Args:
random_cells (anndata.AnnData): Generated cells.
valid_cells (anndata.AnnData):Valid cells.
sigma (float): Sigma value.
batch_no (int): Batch number of projected batch.
Returns:
Dict[str, float]: MMD loss between projected, autoencoded and valid cells.
"""
mmd_valid_cells = valid_cells[:, valid_cells.var['pca_genes']].copy()
mmd_valid_cells = _scale_cells(mmd_valid_cells)
mmd_valid_cells_pca_space = np.matmul(mmd_valid_cells.X,
mmd_valid_cells.varm['PCs'])
mmd_random_cells = random_cells[:, valid_cells.var['pca_genes']].copy()
mmd_random_cells = _scale_cells(mmd_random_cells)
mmd_random_cells_pca_space = np.matmul(mmd_random_cells.X,
mmd_valid_cells.varm['PCs'])
valid_cells_idx = valid_cells.obs.batch.cat.codes == batch_no
mmd = sc_mmd.mmd_loss(
valid_cells=mmd_valid_cells_pca_space[valid_cells_idx],
random_cells=mmd_random_cells_pca_space[~valid_cells_idx],
sigma=sigma)
auc = _classify_rfc(mmd_random_cells_pca_space[~valid_cells_idx],
mmd_valid_cells_pca_space[valid_cells_idx])
mmd_autoencoded = sc_mmd.mmd_loss(
valid_cells=mmd_valid_cells_pca_space[valid_cells_idx],
random_cells=mmd_random_cells_pca_space[valid_cells_idx],
sigma=sigma)
auc_autoencoded = _classify_rfc(
mmd_random_cells_pca_space[valid_cells_idx],
mmd_valid_cells_pca_space[valid_cells_idx])
return LossResults(mmd=mmd,
auc=auc,
mmd_autoencoded=mmd_autoencoded,
auc_autoencoded=auc_autoencoded)
def _classify_rfc(projected_random: np.ndarray,
projected_valid: np.ndarray,
n_jobs: int = 1) -> float:
"""Trains a random forest classifier and tries to distinguish datasets."""
data = np.concatenate((projected_random, projected_valid))
target = np.zeros(projected_random.shape[0] + projected_valid.shape[0])
target[projected_valid.shape[0]:] = 1
rf_classifier = ensemble.RandomForestClassifier(n_estimators=100,
min_samples_leaf=0.1,
max_depth=3,
max_features=5,
n_jobs=n_jobs,
class_weight="balanced")
n_splits = 5
cvsplit = model_selection.StratifiedKFold(n_splits=n_splits, shuffle=True)
auc_accum = 0
for train, test in cvsplit.split(data, target):
pred_target = rf_classifier.fit(data[train],
target[train]).predict(data[test])
auc = metrics.roc_auc_score(target[test], pred_target)
auc_accum += auc / n_splits
return auc_accum