-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate_model.py
420 lines (371 loc) · 21 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import sys, os
import pickle
import argparse
from matplotlib.image import pil_to_array
from tqdm import tqdm
import numpy as np
import soundfile as sf
import torch
import torch.nn as nn
import torch.utils.data as utils
from metrics import location_sensitive_detection
from models.SELD_Model import SELD_Model
from utility_functions import load_model, save_model, gen_submission_list_task2,save_array_to_csv
from torchinfo import summary
from Dcase21_metrics import *
'''
Load pretrained model and compute the metrics for Task 2
of the L3DAS21 challenge. The metric is F score computed with the
location sensitive detection: https://ieeexplore.ieee.org/document/8937220.
Command line arguments define the model parameters, the dataset to use and
where to save the obtained results.
'''
def load_model(model, optimizer, path, cuda, device,scheduler=None):
if isinstance(model, torch.nn.DataParallel):
model = model.module # load state dict of wrapped module
if cuda:
checkpoint = torch.load(path, map_location=device)
else:
checkpoint = torch.load(path, map_location='cpu')
try:
model.load_state_dict(checkpoint['model_state_dict'])
except:
# work-around for loading checkpoints where DataParallel was saved instead of inner module
from collections import OrderedDict
model_state_dict_fixed = OrderedDict()
prefix = 'module.'
for k, v in checkpoint['model_state_dict'].items():
if k.startswith(prefix):
k = k[len(prefix):]
model_state_dict_fixed[k] = v
model.load_state_dict(model_state_dict_fixed)
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if scheduler is not None:
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
if 'state' in checkpoint:
state = checkpoint['state']
else:
# older checkpoints only store step, rest of state won't be there
state = {'step': checkpoint['step']}
np.random.set_state(checkpoint['random_states'][0])
torch.set_rng_state(checkpoint['random_states'][1].cpu())
if torch.cuda.is_available() and checkpoint['random_states'][2] is not None:
torch.cuda.set_rng_state(checkpoint['random_states'][2].cpu())
return state
def main(args):
model_path='RESULTS/Task2/{}/checkpoint'.format(args.architecture)#########
if args.use_cuda:
device = 'cuda:' + str(args.gpu_id)
else:
device = 'cpu'
print ('\nLoading dataset')
#LOAD DATASET
with open(args.predictors_path, 'rb') as f:
predictors = pickle.load(f)
with open(args.target_path, 'rb') as f:
target = pickle.load(f)
phase_string='_Phase' if args.phase else ''
dataset_string='L3DAS21_'+str(args.n_mics)+'Mics_Magnidute'+phase_string+'_'+str(args.input_channels)+'Ch'
#####################################NORMALIZATION####################################
if args.dataset_normalization not in {'False','false','None','none'}:
print('\nDataset_Normalization')
if args.dataset_normalization in{'DQ_Normalization','UnitNormNormalization','UnitNorm'}:
predictors = torch.tensor(predictors)
target = torch.tensor(target)
if args.n_mics==2:
if args.domain in ['DQ','dq','dQ','Dual_Quaternion','dual_quaternion']:
dataset_string+=' Dataset Normalization for 2Mic 8Ch Magnitude Dual Quaternion UnitNorm'
print('Dataset Normalization for 2Mic 8Ch Magnitude Dual Quaternion UnitNorm')
## TEST PREDICTORS ##
q_0, q_1, q_2, q_3, p_0, p_1, p_2, p_3 = torch.chunk(predictors[:,:8,:,:], chunks=8, dim=1)
denominator_0 = q_0 ** 2 + q_1 ** 2 + q_2 ** 2 + q_3 ** 2
denominator_1 = torch.sqrt(denominator_0)
deno_cross = q_0 * p_0 + q_1 * p_1 + q_2 * p_2 + q_3 * p_3
p_0 = p_0 - deno_cross / denominator_0 * q_0
p_1 = p_1 - deno_cross / denominator_0 * q_1
p_2 = p_2 - deno_cross / denominator_0 * q_2
p_3 = p_3 - deno_cross / denominator_0 * q_3
q_0 = q_0 / denominator_1
q_1 = q_1 / denominator_1
q_2 = q_2 / denominator_1
q_3 = q_3 / denominator_1
predictors[:,:8,:,:] = torch.cat([q_0, q_1, q_2, q_3, p_0, p_1, p_2, p_3], dim=1)
if args.phase:
raise ValueError('DATASET NORMALIZATION FOR PHASE DUAL QUATERNION NOT YET IMPLEMENTED')
print('Dataset Normalization for 2Mic 16Ch Magnitude-Phase Dual Quaternion ')
predictors = np.array(predictors)
target = np.array(target)
print ('\nShapes:')
print ('Test predictors: ', predictors.shape)
print ('Test target: ',target.shape)
else:
predictors = np.array(predictors)
target = np.array(target)
print ('\nShapes:')
print ('Test predictors: ', predictors.shape)
print ('Test target: ', target.shape)
if args.n_mics==1:
dataset_string+=' Dataset Normalization for 1Mic 4Ch Magnitude'
print('Dataset Normalization for 1Mic 4Ch Magnitude')
# Normalize test predictors with mean 0 and std 1
test_mag_min = np.mean(predictors[:,:4,:,:])
test_mag_std = np.std(predictors[:,:4,:,:])
predictors[:,:4,:,:] -= test_mag_min
predictors[:,:4,:,:] /= test_mag_std
if args.phase:
dataset_string+=' Dataset Normalization for 1Mic 8Ch Magnitude-Phase'
print('Dataset Normalization for 1Mic 8Ch Magnitude-Phase')
test_phase_min = np.mean(predictors[:,4:,:,:])
test_phase_std = np.std(predictors[:,4:,:,:])
predictors[:,4:,:,:] -= test_phase_min
predictors[:,4:,:,:] /= test_phase_std
if args.n_mics==2:
dataset_string+=' Dataset Normalization for 2Mic 8Ch Magnitude'
print('Dataset Normalization for 2Mic 8Ch Magnitude')
# Normalize test predictors with mean 0 and std 1
test_mag_min = np.mean(predictors[:,:8,:,:])
test_mag_std = np.std(predictors[:,:8,:,:])
predictors[:,:8,:,:] -= test_mag_min
predictors[:,:8,:,:] /= test_mag_std
if args.phase:
dataset_string+=' Dataset Normalization for 2Mic 16Ch Magnitude-Phase'
print('Dataset Normalization for 2Mic 16Ch Magnitude-Phase')
test_phase_min = np.mean(predictors[:,8:,:,:])
test_phase_std = np.std(predictors[:,8:,:,:])
predictors[:,8:,:,:] -= test_phase_min
predictors[:,8:,:,:] /= test_phase_std
else:
predictors = np.array(predictors)
target = np.array(target)
print ('\nShapes:')
print ('Test predictors: ', predictors.shape)
print ('Test target: ', target.shape)
#convert to tensor
predictors = torch.tensor(predictors).float()
target = torch.tensor(target).float()
#build dataset from tensors
dataset_ = utils.TensorDataset(predictors, target)
#build data loader from dataset
dataloader = utils.DataLoader(dataset_, 1, shuffle=False, pin_memory=True)
if not os.path.exists(args.results_path):
os.makedirs(args.results_path)
#LOAD MODEL
n_time_frames = predictors.shape[-1]
model=SELD_Model(time_dim=n_time_frames, freq_dim=args.freq_dim, input_channels=args.input_channels, output_classes=args.output_classes,
domain=args.domain, domain_classifier=args.domain_classifier,
cnn_filters=args.cnn_filters, kernel_size_cnn_blocks=args.kernel_size_cnn_blocks, pool_size=args.pool_size, pool_time=args.pool_time,
D=args.D, dilation_mode=args.dilation_mode,G=args.G, U=args.U, kernel_size_dilated_conv=args.kernel_size_dilated_conv,
spatial_dropout_rate=args.spatial_dropout_rate,V=args.V, V_kernel_size=args.V_kernel_size,
fc_layers=args.fc_layers, fc_activations=args.fc_activations, fc_dropout=args.fc_dropout, dropout_perc=args.dropout_perc,
class_overlaps=args.class_overlaps,
use_bias_conv=args.use_bias_conv,use_bias_linear=args.use_bias_linear,batch_norm=args.batch_norm, parallel_ConvTC_block=args.parallel_ConvTC_block, parallel_magphase=args.parallel_magphase,
extra_name=args.model_extra_name, verbose=False)
architecture_dir='RESULTS/Task2/{}/'.format(args.architecture)
if len(os.path.dirname(architecture_dir)) > 0 and not os.path.exists(os.path.dirname(architecture_dir)):
os.makedirs(os.path.dirname(architecture_dir))
model_dir=architecture_dir+model.model_name+'/'
if len(os.path.dirname(model_dir)) > 0 and not os.path.exists(os.path.dirname(model_dir)):
os.makedirs(os.path.dirname(model_dir))
args.load_model=model_dir+'checkpoint_best_model_on_Test'
unique_name=model_dir+model.model_name
print(model.model_name)
#summary(model, input_size=(args.batch_size,args.input_channels,args.freq_dim,n_time_frames)) ##################################################
if args.use_cuda:
print("Moving model to gpu")
model = model.to(device)
#load checkpoint
if args.load_model is not None and os.path.isfile(args.load_model) :####################################### added "and os.path.isfile(args.load_model)"
print("Loading Model")
state = load_model(model, None, args.load_model, args.use_cuda,device,None)
#COMPUTING METRICS
print("COMPUTING TASK 2 METRICS")
TP = 0
FP = 0
FN = 0
output_classes=args.output_classes
class_overlaps=args.class_overlaps
count = 0
model.eval()
eval_metrics = SELDMetrics(nb_classes=output_classes, doa_threshold=args.Dcase21_metrics_DOA_threshold)
with tqdm(total=len(dataloader) // 1) as pbar, torch.no_grad():
for example_num, (x, target) in enumerate(dataloader):
x = x.to(device)
target = target.to(device)
sed, doa = model(x)
sed = sed.cpu().numpy().squeeze()
doa = doa.cpu().numpy().squeeze()
target = target.cpu().numpy().squeeze()
#in the target matrices sed and doa are joint
sed_target = target[:,:args.output_classes*args.class_overlaps]
doa_target = target[:,args.output_classes*args.class_overlaps:]
prediction,prediction_dict = gen_submission_list_task2(sed, doa,
max_overlaps=args.class_overlaps,
max_loc_value=args.max_loc_value)
target,target_dict = gen_submission_list_task2(sed_target, doa_target,
max_overlaps=args.class_overlaps,
max_loc_value=args.max_loc_value)
pred_labels =segment_labels(prediction_dict, args.num_frames)
ref_labels =segment_labels(target_dict, args.num_frames)
eval_metrics.update_seld_scores(pred_labels, ref_labels)
tp, fp, fn, _ = location_sensitive_detection(prediction, target, args.num_frames,
args.spatial_threshold, False)
TP += tp
FP += fp
FN += fn
count += 1
pbar.update(1)
#compute total F score
precision = TP / (TP + FP + sys.float_info.epsilon)
recall = TP / (TP + FN + sys.float_info.epsilon)
F_score = 2 * ((precision * recall) / (precision + recall + sys.float_info.epsilon))
Nref=TP+FN
Nsys=TP+FP
ER_score = (max(Nref, Nsys) - TP) / (Nref + 0.0)################ from evaluation_metrics.py SELDnet
ER_dcase21, F_dcase21, LE_dcase21, LR_dcase21 = eval_metrics.compute_seld_scores()
#SELD_dcase21 = np.mean([ER_dcase21,1 - F_dcase21, LE_dcase21/180,1 - LR_dcase21])
SELD_L3DAS21_LRLE = np.mean([ER_score,1 - F_score, LE_dcase21/180,1 - LR_dcase21])
CSL_score= np.mean([LE_dcase21/180,1 - LR_dcase21])
LSD_score=np.mean([1-F_score,ER_score])
#visualize and save results
results = {'precision': precision,
'recall': recall,
'F score': F_score,
'ER score': ER_score,
'LE': LE_dcase21,
'LR': LR_dcase21,
'CSL score': CSL_score,
'LSD score': LSD_score,
'Global SELD score': SELD_L3DAS21_LRLE
}
print ('*******************************')
print ('RESULTS')
print ('TP: ' , TP)
print ('FP: ' , FP)
print ('FN: ' , FN)
print ('******** SELD (F ER L3DAS21 - LE LR DCASE21) ***********')
print ('Global SELD score: ', SELD_L3DAS21_LRLE)
print ('LSD score: ', LSD_score)
print ('CSL score: ', CSL_score)
print ('F score: ', F_score)
print ('ER score: ', ER_score)
print ('LE: ', LE_dcase21)
print ()
out_path = os.path.join(args.results_path, 'task2_metrics_dict.json')
np.save(out_path, results)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
#saving/loading parameters
parser.add_argument('--results_path', type=str, default='RESULTS/Task2',
help='Folder to write results dicts into')
parser.add_argument('--checkpoint_dir', type=str, default='RESULTS/Task2',
help='Folder to write checkpoints into')
parser.add_argument('--load_model', type=str, default=None,#'RESULTS/Task2/checkpoint',
help='Reload a previously trained model (whole task model)')
#dataset parameters
parser.add_argument('--training_predictors_path', type=str,default='/var/datasets/L3DAS21/processed/task2_predictors_train.pkl')
parser.add_argument('--training_target_path', type=str,default='/var/datasets/L3DAS21/processed/task2_target_train.pkl')
parser.add_argument('--validation_predictors_path', type=str, default='/var/datasets/L3DAS21/processed/task2_predictors_validation.pkl')
parser.add_argument('--validation_target_path', type=str, default='/var/datasets/L3DAS21/processed/task2_target_validation.pkl')
parser.add_argument('--test_predictors_path', type=str, default='/var/datasets/L3DAS21/processed/task2_predictors_test.pkl')
parser.add_argument('--test_target_path', type=str, default='/var/datasets/L3DAS21/processed/task2_target_test.pkl')
#training parameters
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--use_cuda', type=str, default='True')
parser.add_argument('--early_stopping', type=str, default='True')
parser.add_argument('--fixed_seed', type=str, default='True')
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--batch_size', type=int, default=1,
help="Batch size")
parser.add_argument('--sr', type=int, default=32000,
help="Sampling rate")
parser.add_argument('--patience', type=int, default=250,
help="Patience for early stopping on validation set")
#model parameters
#the following parameters produce a prediction for each 100-msecs frame
parser.add_argument('--architecture', type=str, default='DualQSELD-TCN',
help="model's architecture, can be seldnet_vanilla or seldnet_augmented")
parser.add_argument('--input_channels', type=int, default=4,
help="4/8 for 1/2 mics, multiply x2 if using also phase information")
parser.add_argument('--n_mics', type=int, default=1)
parser.add_argument('--phase', type=str, default='False')
parser.add_argument('--class_overlaps', type=int, default=3,
help= 'max number of simultaneous sounds of the same class')
parser.add_argument('--time_dim', type=int, default=4800)
parser.add_argument('--freq_dim', type=int, default=256)
parser.add_argument('--output_classes', type=int, default=14)
parser.add_argument('--pool_size', type=str, default='[[8,2],[8,2],[2,2],[1,1]]')
parser.add_argument('--cnn_filters', type=str, default='[64,64,64]')
parser.add_argument('--pool_time', type=str, default='True')
parser.add_argument('--dropout_perc', type=float, default=0.3)
parser.add_argument('--D', type=str, default='[10]')
parser.add_argument('--G', type=int, default=128)
parser.add_argument('--U', type=int, default=128)
parser.add_argument('--V', type=str, default='[128,128]')
parser.add_argument('--spatial_dropout_rate', type=float, default=0.5)
parser.add_argument('--batch_norm', type=str, default='BN')
parser.add_argument('--dilation_mode', type=str, default='fibonacci')
parser.add_argument('--model_extra_name', type=str, default='')
parser.add_argument('--test_mode', type=str, default='test_best')
parser.add_argument('--use_lr_scheduler', type=str, default='True')
parser.add_argument('--lr_scheduler_step_size', type=int, default=150)
parser.add_argument('--lr_scheduler_gamma', type=float, default=0.5)
parser.add_argument('--min_lr', type=float, default=0.000005)
parser.add_argument('--dataset_normalization', type=str, default='True')
parser.add_argument('--kernel_size_cnn_blocks', type=int, default=3)
parser.add_argument('--kernel_size_dilated_conv', type=int, default=3)
parser.add_argument('--use_tcn', type=str, default='True')
parser.add_argument('--use_bias_conv', type=str, default='True')
parser.add_argument('--use_bias_linear', type=str, default='True')
parser.add_argument('--verbose', type=str, default='False')
parser.add_argument('--sed_loss_weight', type=float, default=1.)
parser.add_argument('--doa_loss_weight', type=float, default=5.)
parser.add_argument('--domain_classifier', type=str, default='same')
parser.add_argument('--domain', type=str, default='DQ')
parser.add_argument('--fc_activations', type=str, default='Linear')
parser.add_argument('--fc_dropout', type=str, default='Last')
parser.add_argument('--fc_layers', type=str, default='[128]')
parser.add_argument('--V_kernel_size', type=int, default=3)
parser.add_argument('--use_time_distributed', type=str, default='False')
parser.add_argument('--parallel_ConvTC_block', type=str, default='False')
'''parser.add_argument('--wandb_id', type=str, default='none')
parser.add_argument('--wandb_project', type=str, default='')
parser.add_argument('--wandb_entity', type=str, default='')'''
############## TEST ###################
parser.add_argument('--max_loc_value', type=float, default=2.,
help='max value of target loc labels (to rescale model\'s output since the models has tanh in the output loc layer)')
parser.add_argument('--num_frames', type=int, default=600,
help='total number of time frames in the predicted seld matrices. (600 for 1-minute sounds with 100msecs frames)')
parser.add_argument('--spatial_threshold', type=float, default=2.,
help='max cartesian distance withn consider a true positive')
########################################
######################### CHECKPOINT ####################################################
parser.add_argument('--checkpoint_step', type=int, default=100,
help="Save and test models every checkpoint_step epochs")
parser.add_argument('--test_step', type=int, default=10,
help="Save and test models every checkpoint_step epochs")
parser.add_argument('--min_n_epochs', type=int, default=1000,
help="Save and test models every checkpoint_step epochs")
parser.add_argument('--Dcase21_metrics_DOA_threshold', type=int, default=20)
parser.add_argument('--parallel_magphase', type=str, default='False')
parser.add_argument('--TextArgs', type=str, default='config/Test.txt', help='Path to text with training settings')#'config/PHC-SELD-TCN-S1_BN.txt'
parse_list = readFile(parser.parse_args().TextArgs)
args = parser.parse_args(parse_list)
#eval string bools and lists
args.use_cuda = eval(args.use_cuda)
args.early_stopping = eval(args.early_stopping)
args.fixed_seed = eval(args.fixed_seed)
args.pool_size= eval(args.pool_size)
args.cnn_filters = eval(args.cnn_filters)
args.verbose = eval(args.verbose)
args.D=eval(args.D)
args.V=eval(args.V)
args.use_lr_scheduler=eval(args.use_lr_scheduler)
#args.dataset_normalization=eval(args.dataset_normalization)
args.phase=eval(args.phase)
args.use_tcn=eval(args.use_tcn)
args.use_bias_conv=eval(args.use_bias_conv)
args.use_bias_linear=eval(args.use_bias_linear)
args.fc_layers = eval(args.fc_layers)
args.parallel_magphase = eval(args.parallel_magphase)
main(args)