diff --git a/docs/make.jl b/docs/make.jl index 6c5d8c16..8225ecf2 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -4,29 +4,29 @@ using Turing using Plots makedocs( - warnonly = true, - sitename = "SequentialSamplingModels", - format = Documenter.HTML( - assets = [ + warnonly=true, + sitename="SequentialSamplingModels", + format=Documenter.HTML( + assets=[ asset( "https://fonts.googleapis.com/css?family=Montserrat|Source+Code+Pro&display=swap", - class = :css, + class=:css, ), ], - collapselevel = 1, + collapselevel=1, ), - modules = [ + modules=[ SequentialSamplingModels, Base.get_extension(SequentialSamplingModels, :TuringExt), Base.get_extension(SequentialSamplingModels, :PlotsExt), ], - pages = [ + pages=[ "Home" => "index.md", "Models" => [ "Attentional Drift Diffusion (aDDM)" => "aDDM.md", "Circular Drift Diffusion Model (CDDM)" => "cddm.md", "Drift Diffusion Model (DDM)" => "DDM.md", - "Ex-Gaussian Distrbituion" => "ex_gaussian.md", + "Ex-Gaussian Distribution" => "ex_gaussian.md", "Leaky Competing Accumulator (LCA)" => "lca.md", "Linear Ballistic Accumulator (LBA)" => "lba.md", "Lognormal Race Model (LNR)" => "lnr.md", @@ -53,4 +53,4 @@ makedocs( ], ) -deploydocs(repo = "github.com/itsdfish/SequentialSamplingModels.jl.git") +deploydocs(repo="github.com/itsdfish/SequentialSamplingModels.jl.git") diff --git a/docs/src/ex_gaussian.md b/docs/src/ex_gaussian.md index e483d7e3..5eeb603c 100644 --- a/docs/src/ex_gaussian.md +++ b/docs/src/ex_gaussian.md @@ -29,7 +29,7 @@ In the code below, we will define parameters for the LBA and create a model obje ### Mean of Gaussian Component -The parameter $\mu$ represents the mean processing time of each accumulator in log space. +The parameter $\mu$ represents the mean processing time in log space. ```@example ex_gaussian μ = .80 @@ -49,7 +49,7 @@ The parameter $\tau$ represents the mean of the exponential component. ``` ### Ex-Gaussian Constructor -Now that values have been asigned to the parameters, we will pass them to `ExGaussian` to generate the model object. +Now that values have been assigned to the parameters, we will pass them to `ExGaussian` to generate the model object. ```@example ex_gaussian dist = ExGaussian(μ, σ, τ)