-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpeechGenerator.py
94 lines (74 loc) · 2.9 KB
/
SpeechGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
"""
A generator for reading and serving audio files
https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly.html
Remember to use multiprocessing:
# Train model on dataset
model.fit_generator(generator=training_generator,
validation_data=validation_generator,
use_multiprocessing=True,
workers=6)
"""
import numpy as np
import tensorflow.keras
import librosa
class SpeechGen(tensorflow.keras.utils.Sequence):
"""
'Generates data for Keras'
list_IDs - list of files that this generator should load
labels - dictionary of corresponding (integer) category
to each file in list_IDs
Expects list_IDs and labels to be of the same length
"""
def __init__(self, list_IDs, labels, batch_size=32,
dim=16000, shuffle=True):
'Initialization'
self.dim = dim
self.batch_size = batch_size
self.labels = labels
self.list_IDs = list_IDs
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
list_IDs_temp = [self.list_IDs[k] for k in indexes]
# Generate data
X, y = self.__data_generation(list_IDs_temp)
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle:
np.random.shuffle(self.indexes)
def __data_generation(self, list_IDs_temp):
'Generates data containing batch_size samples'
# X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, self.dim))
y = np.empty((self.batch_size), dtype=int)
# Generate data
for i, ID in enumerate(list_IDs_temp):
# load data from file, saved as numpy array on disk
curX = np.load(ID)
# normalize
# invMax = 1/(np.max(np.abs(curX))+1e-3)
# curX *= invMax
# curX could be bigger or smaller than self.dim
if curX.shape[0] == self.dim:
X[i] = curX
elif curX.shape[0] > self.dim: # bigger
# we can choose any position in curX-self.dim
randPos = np.random.randint(curX.shape[0]-self.dim)
X[i] = curX[randPos:randPos+self.dim]
else: # smaller
randPos = np.random.randint(self.dim-curX.shape[0])
X[i, randPos:randPos + curX.shape[0]] = curX
# print('File dim smaller')
# Store class
y[i] = self.labels[ID]
return X, y