-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathclap.py
65 lines (57 loc) · 2.79 KB
/
clap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class ClapAnalyzer:
def __init__(self, note_lengths, deviation_threshold=0.1):
"""
:param note_lengths: Relative note lengths in the rhythmic pattern. F.ex. [2, 1, 1, 2, 2]
:param deviation_threshold: How much deviation from the pattern should be considered failure
:return:
"""
self.buffer_size = len(note_lengths)
self.pattern = self.note_lengths_to_normalized_pauses(note_lengths)
self.pattern_sum = sum(self.pattern)
self.min_pattern_time = .1 * self.pattern_sum # min 100 ms between fastest clap in sequence
self.max_pattern_time = .5 * self.pattern_sum # max 500 ms between fastest clap in sequence
self.clap_times = [None] * self.buffer_size
self.deviation_threshold = deviation_threshold
self.current_index = 0
self.clap_listeners = set()
self.clap_sequence_listeners = set()
@staticmethod
def note_lengths_to_normalized_pauses(note_lengths):
note_lengths.pop() # Because the length of the last note doesn't matter
min_note_length = float(min(note_lengths))
return map(lambda x: x / min_note_length, note_lengths)
def on_clap(self, fn):
self.clap_listeners.add(fn)
def on_clap_sequence(self, fn):
self.clap_sequence_listeners.add(fn)
def clap(self, time):
"""
Tell ClapAnalyzer that a clap has been detected at the specified time
:param time: Absolute time in seconds. Must be float.
:return:
"""
for fn in self.clap_listeners:
fn()
self.current_index = (self.current_index + 1) % self.buffer_size
self.clap_times[self.current_index] = time
first_clap_in_sequence = self.clap_times[self.current_index - self.buffer_size + 1]
if first_clap_in_sequence is None:
return # waiting for more claps
time_diff = time - first_clap_in_sequence
avg_time_per_clap_unit = time_diff / self.pattern_sum
if self.min_pattern_time <= time_diff <= self.max_pattern_time:
total_deviation = 0
j = 0
for i in range(self.current_index - self.buffer_size + 1, self.current_index):
clap_time_diff = self.clap_times[i + 1] - self.clap_times[i]
relative_clap_time_diff = clap_time_diff / avg_time_per_clap_unit
total_deviation += (relative_clap_time_diff - self.pattern[j]) ** 2
j += 1
if total_deviation < self.deviation_threshold:
for fn in self.clap_sequence_listeners:
fn()
return # clap sequence detected!
else:
return # clap sequence didn't match accurately enough with the pattern
else:
return # clap sequence too short or too long