-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscorer.py
73 lines (67 loc) · 2.41 KB
/
scorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!pip install git+https://github.com/openai/CLIP.git
#Following https://github.com/LAION-AI/aesthetic-predictor
import os
import torch
# import clip
from PIL import Image
import torch.nn as nn
from os.path import expanduser
from urllib.request import urlretrieve
import wandb_eval.aesthetic_scorer as aesthetic_lib
import wandb_eval.pick_score as pick_score
from transformers import CLIPProcessor, CLIPModel
from wandb_eval.score import build_image_reward_model,get_imagereward_score,build_clip_model,clip_score
from wandb_eval.hps import hps_initialize_model,hps_score
clip_dict = {"vit_l_14":"ViT-L/14","vit_b_32":"ViT-B/32"}
CONFIG = dict(
aesthetic=dict(
builder = aesthetic_lib.load_models,
runner= aesthetic_lib.predict,
),
pick=dict(
builder = pick_score.load_model_dict,
runner= pick_score.get_pick_score,
),
image_reward=dict(
builder=build_image_reward_model,
runner=get_imagereward_score,
),
clip=dict(
builder=build_clip_model,
runner=clip_score
),
hps=dict(
builder=hps_initialize_model,
runner=hps_score
)
)
class ScorePredictor():
def __init__(self,device='cpu',metrics = ['aesthetic','pick']):
self.model_dict = {x:CONFIG[x]['builder'](device=device) for x in metrics}
self.device = device
self.metrics = metrics
def to(self,device):
for dk,d in self.model_dict.items():
for k,v in d.items():
if k=='device':
d[k] = device
elif isinstance(v,nn.Module):
d[k] = v.to(device)
@torch.no_grad()
def __call__(self, prompt,image):
all_scores = {}
for m in self.metrics:
model_dict = self.model_dict[m]
score = CONFIG[m]['runner'](prompt=prompt, image=image,model_dict=model_dict)
all_scores[m] = score
return all_scores
if __name__ == '__main__':
# test
from diffusers.utils import load_image
predictor = ScorePredictor(metrics=['aesthetic','pick','image_reward','clip','hps'])
image = load_image('https://s3-us-west-2.amazonaws.com/offload-s3-dtowns-wordpress/wp-content/uploads/20171113203124/Favorite-End.jpg')
prompt = 'a watercolor paint of Golden Gate Bridage, San Francisco'
predictor.to('cuda')
scores = predictor(prompt,image)
predictor.to('cpu')
print(scores)